boreal landscapes
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 13)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Tejshree Tiwari ◽  
Ryan Sponseller ◽  
Hjalmar Laudon

Abstract One likely consequence of global climate change is an increased frequency and intensity of droughts at high latitudes. We use a 17-year record from 13 nested boreal streams to examine the direct and lagged effects of summer drought on the quantity and quality of dissolved organic carbon (DOC) inputs from catchment soils. Protracted periods of drought reduced DOC concentrations in all catchments but also led to large pulses of DOC inputs upon rewetting in autumn. Concurrent changes in DOC optical properties and chemical character suggest that seasonal drying and rewetting triggers soil processes that alter the forms of carbon supplied to streams. Contrary to common belief, the clearest drought effects were observed in larger watersheds, whereas responses were most muted in smaller catchments. Collectively, our results reveal an emerging shift in the seasonal distribution of DOC concentrations and character, with potentially far-reaching consequences for northern aquatic ecosystems.


2021 ◽  
Vol 493 ◽  
pp. 119254
Author(s):  
Eliza Maher Hasselquist ◽  
Lenka Kuglerová ◽  
Jörgen Sjögren ◽  
Joakim Hjältén ◽  
Eva Ring ◽  
...  

Author(s):  
Andrew J Maguire ◽  
Jan U.H. Eitel ◽  
Troy S Magney ◽  
Christian Frankenberg ◽  
Philipp Koehler ◽  
...  

2021 ◽  
Vol 492 ◽  
pp. 119212
Author(s):  
Ryan M. Burrows ◽  
Micael Jonsson ◽  
Emma Fältström ◽  
Jannika Andersson ◽  
Ryan A. Sponseller

2021 ◽  
Vol 4 ◽  
Author(s):  
Maxence Martin ◽  
Pierre Grondin ◽  
Marie-Claude Lambert ◽  
Yves Bergeron ◽  
Hubert Morin

Large primary forest residuals can still be found in boreal landscapes. Their areas are however shrinking rapidly due to anthropogenic activities, in particular industrial-scale forestry. The impacts of logging activities on primary boreal forests may also strongly differ from those of wildfires, the dominant stand-replacing natural disturbance in these forests. Since industrial-scale forestry is driven by economic motives, there is a risk that stands of higher economic value will be primarily harvested, thus threatening habitats, and functions related to these forests. Hence, the objective of this study was to identify the main attributes differentiating burned and logged stands prior to disturbance in boreal forests. The study territory lies in the coniferous and closed-canopy boreal forest in Québec, Canada, where industrial-scale logging and wildfire are the two main stand-replacing disturbances. Based on Québec government inventories of primary forests, we identified 427 transects containing about 5.5 circular field plots/transect that were burned or logged shortly after being surveyed, between 1985 and 2016. Comparative analysis of the main structural and environmental attributes of these transects highlighted the strong divergence in the impact of fire and harvesting on primary boreal forests. Overall, logging activities mainly harvested forests with the highest economic value, while most burned stands were low to moderately productive or recently disturbed. These results raise concerns about the resistance and resilience of remnant primary forests within managed areas, particularly in a context of disturbance amplification due to climate change. Moreover, the majority of the stands studied were old-growth forests, characterized by a high ecological value but also highly threatened by anthropogenic disturbances. A loss in the diversity and functionality of primary forests, and particularly the old-growth forests, therefore adds to the current issues related to these ecosystems. Since 2013, the study area is under ecosystem-based management, which implies that there have been marked changes in forestry practices. Complementary research will be necessary to assess the capacity of ecosystem-based management to address the challenges identified in our study.


2020 ◽  
Vol 201 ◽  
pp. 103855
Author(s):  
Aku Korhonen ◽  
Juha Siitonen ◽  
D. Johan Kotze ◽  
Auli Immonen ◽  
Leena Hamberg

Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 516 ◽  
Author(s):  
Robert H. Ziel ◽  
Peter A. Bieniek ◽  
Uma S. Bhatt ◽  
Heidi Strader ◽  
T. Scott Rupp ◽  
...  

Research Highlights: Flammability of wildland fuels is a key factor influencing risk-based decisions related to preparedness, response, and safety in Alaska. However, without effective measures of current and expected flammability, the expected likelihood of active and problematic wildfires in the future is difficult to assess and prepare for. This study evaluates the effectiveness of diverse indices to capture high-risk fires. Indicators of drought and atmospheric drivers are assessed along with the operational Canadian Forest Fire Danger Rating System (CFFDRS). Background and Objectives: In this study, 13 different indicators of atmospheric conditions, fuel moisture, and flammability are compared to determine how effective each is at identifying thresholds and trends for significant wildfire activity. Materials and Methods: Flammability indices are compared with remote sensing characterizations that identify where and when fire activity has occurred. Results: Among these flammability indicators, conventional tools calibrated to wildfire thresholds (Duff Moisture Code (DMC) and Buildup Index (BUI)), as well as measures of atmospheric forcing (Vapor Pressure Deficit (VPD)), performed best at representing the conditions favoring initiation and size of significant wildfire events. Conventional assessments of seasonal severity and overall landscape flammability using DMC and BUI can be continued with confidence. Fire models that incorporate BUI in overall fire potential and fire behavior assessments are likely to produce effective results throughout boreal landscapes in Alaska. One novel result is the effectiveness of VPD throughout the state, making it a potential alternative to FFMC among the short-lag/1-day indices. Conclusions: This study demonstrates the societal value of research that joins new academic research results with operational needs. Developing the framework to do this more effectively will bring science to action with a shorter lag time, which is critical as we face growing challenges from a changing climate.


2020 ◽  
Author(s):  
Kevin J Devito ◽  
Lindsay M James ◽  
Daniel S Alessi ◽  
Kelly Hokanson ◽  
Nick Kettridge ◽  
...  

<p>Peatlands are integral to sustaining landscape eco-hydrological function in water-limited boreal landscapes and serve as important water sources for headwater streams and surrounding forests, and recently for mega-scale watershed construction associated with resource extraction. Despite the regional moisture deficit of the Boreal plains, peatlands and margin swamps exist on topographic highs where low permeability (clogging) layers occur proximal to the surface and are apparently isolated from surface water and local and regional groundwater inputs. The <span>water generating mechanisms (</span>external water sources, internal feedback mechanisms) that<span> enable peatland formation with such </span>delicate water balances<span> in these </span>unique hydrogeologic settings are not well known, and have large implications for understanding the eco-hydrologic role of natural peatlands as well as direct peatland construction in drier boreal landscapes.</p><p>A multi-year sampling campaign was conducted to collect hydrometric, geochemical (DOC, pH, major cations and anions), and isotopic (D/H, <sup>18</sup>O/<sup>16</sup>O) data from a small isolated peatland-margin swamp complex. We explored the relative roles of margin swamps in buffering water loss and generating perched groundwater, shading and wind protection from adjacent forests, snow redistribution in and around the peatland, and wetland feedbacks on maintenance of peatland moisture and ecosystem function. Long-term (18 year) records of water table gradients between the peatland and an adjacent forest combined with 3 year high intensity <!-- Not sure if you mean to separate the long term data from the high intensity data from Lindsey’s project -->water balance calculations show the peatland to be a source of water to adjacent forests during this period and illustrate the dominance of autogenic wetland feedbacks over allogenic controls (external sources) in peatland development at this location. Contrasts in water storage due to the morphometry <!-- Morphometry? -->of the clogging layer appear to the dominant determinants of peatland and swamp form and function. Layers of decomposed peat and fine textured mineral soils in margin swamps with low water storage potential promoted frequent soil saturation and anoxia, limiting forest vegetation growth and water uptake, further enhancing wetland vegetation, water conservation and generation within the wetland complex. Shading and wind protection from adjacent forests appear to influence soil frost duration and atmospheric demand to further reduce evapotranspiration losses contributing to a slight moisture surplus in the wetland complex relative to the adjacent forest. Understanding the water balance and moisture surplus controls in isolated peatlands sheds light on the relative role of allogenic and autogenic controls on peatlands with implications for: 1) assessing regional eco-hydrological roles of peatland and forestland covers, 2) predicting landscape-scale response to environmental change and land use, and 3) directing landscape scale reclamation or large reconstruction projects over a range of geologic settings in water-limited boreal regions.</p>


Sign in / Sign up

Export Citation Format

Share Document