Two types of sounds and additional spinal nerve innervation to the sonic muscle in John Dory, Zeus faber (Zeiformes: Teleostei)

Author(s):  
A. Onuki ◽  
H. Somiya

The John Dory, Zeus faber, has a pair of intrinsic sonic muscles on the swimbladder wall and produces sounds by rapid contractions of the muscles. The physical properties of the sounds and the detailed innervation pattern to the sonic muscle were investigated. The dory emitted two types of the sounds: ‘bark’ and ‘growl’. The bark consisted of continuous multiple pulses and lasted about 85 ms on the average. The growl consisted of a group of intermittent single-pulses and lasted for 50 ms to 1·2 s. The main frequencies of both sounds were almost similar and ranged between 200 to 600 Hz. The sonic muscles were innervated by the sonic branches of the first to fourth spinal nerves. The innervation from the first spinal nerve was newly revealed in the present study. A total of 1700 myelinated axons innervated the sonic muscles on both sides. There were no sex differences in the sonic muscle size as judged by the sonic muscle–somatic index (male: 0·675%, female: 0·670%).

2018 ◽  
Vol 52 (1-4) ◽  
pp. 1-9 ◽  
Author(s):  
MT Hussan ◽  
MS Islam ◽  
J Alam

The present study was carried out to determine the morphological structure and the branches of the lumbosacral plexus in the indigenous duck (Anas platyrhynchos domesticus). Six mature indigenous ducks were used in this study. After administering an anesthetic to the birds, the body cavities were opened. The nerves of the lumbosacral plexus were dissected separately and photographed. The lumbosacral plexus consisted of lumbar and sacral plexus innervated to the hind limb. The lumbar plexus was formed by the union of three roots of spinal nerves that included last two and first sacral spinal nerve. Among three roots, second (middle) root was the highest in diameter and the last root was least in diameter. We noticed five branches of the lumbar plexus which included obturator, cutaneous femoral, saphenus, cranial coxal, and the femoral nerve. The six roots of spinal nerves, which contributed to form three trunks, formed the sacral plexus of duck. The three trunks united medial to the acetabular foramen and formed a compact, cylindrical bundle, the ischiatic nerve. The principal branches of the sacral plexus were the tibial and fibular nerves that together made up the ischiatic nerve. Other branches were the caudal coxal nerve, the caudal femoral cutaneous nerve and the muscular branches. This study was the first work on the lumbosacral plexus of duck and its results may serve as a basis for further investigation on this subject.


Copeia ◽  
2002 ◽  
Vol 2002 (4) ◽  
pp. 1137-1143 ◽  
Author(s):  
Theresa L. Vance ◽  
Jennifer M. Hewson ◽  
Shannon Modla ◽  
Martin A. Connaughton

2020 ◽  
Vol 33 (06) ◽  
pp. 377-386
Author(s):  
Giorgio Corraretti ◽  
Jean-Michel Vandeweerd ◽  
Fanny Hontoir ◽  
Katrien Vanderperren ◽  
Katrien Palmers

Abstract Objective The aim of this study was to describe the anatomy of the nerves supplying the cervical articular process joint and to identify relevant anatomical landmarks that could aid in the ultrasound-guided location and injection of these nerves for diagnostic and therapeutic purposes. Study Design Twelve cadaveric equine necks were used. Five necks were dissected to study the anatomy of the medial branch of the dorsal ramus of the cervical spinal nerves 3 to 7. Relevant anatomical findings detected during dissections were combined with ultrasonographic images obtained in one other neck. Six additional necks were used to assess the accuracy of ultrasound-guided injections of the medial branch with blue dye. Results Each examined cervical articular process joint, except for C2 to C3, presented a dual nerve supply. The articular process joints were found to be in close anatomical relationship with the medial branch of the dorsal ramus of the cervical spinal nerve exiting from the intervertebral foramen at the same level, and with the medial branch of the dorsal ramus of the cervical spinal nerve exiting from the intervertebral foramen one level cranial to the articular process joint of interest. A total of 55 nerves were injected under ultrasonographic guidance, 51 of which were successfully stained. Conclusion The current study provided new detailed information regarding the innervation of the cervical articular process joint. The medial branches of the dorsal rami of the cervical spinal nerves were injected with an accuracy that would be of clinical value. Our study offers the foundations to develop new diagnostic and therapeutic techniques for pain management in cervical articular process joint arthropathy in horses.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Syeda Fabeha Husain ◽  
Raymond W. M. Lam ◽  
Tao Hu ◽  
Michael W. F. Ng ◽  
Z. Q. G. Liau ◽  
...  

Neuropathic pain remains underrecognised and ineffectively treated in chronic pain sufferers. Consequently, their quality of life is considerably reduced, and substantial healthcare costs are incurred. The anatomical location of pain must be identified for definitive diagnosis, but current neuropsychological tools cannot do so. Matrix metalloproteinases (MMP) are thought to maintain peripheral neuroinflammation, and MMP-12 is elevated particularly in such pathological conditions. Magnetic resonance imaging (MRI) of the peripheral nervous system has made headway, owing to its high-contrast resolution and multiplanar features. We sought to improve MRI specificity of neural lesions, by constructing an MMP-12-targeted magnetic iron oxide nanoparticle (IONP). Its in vivo efficiency was evaluated in a rodent model of neuropathic pain, where the left lumbar 5 (L5) spinal nerve was tightly ligated. Spinal nerve ligation (SNL) successfully induced mechanical allodynia, and thermal hyperalgesia, in the left hind paw throughout the study duration. These neuropathy characteristics were absent in animals that underwent sham surgery. MMP-12 upregulation with concomitant macrophage infiltration, demyelination, and elastin fibre loss was observed at the site of ligation. This was not observed in spinal nerves contralateral and ipsilateral to the ligated spinal nerve or uninjured left L5 spinal nerves. The synthesised MMP-12-targeted magnetic IONP was stable and nontoxic in vitro. It was administered onto the left L5 spinal nerve by intrathecal injection, and decreased magnetic resonance (MR) signal was observed at the site of ligation. Histology analysis confirmed the presence of iron in ligated spinal nerves, whereas iron was not detected in uninjured left L5 spinal nerves. Therefore, MMP-12 is a potential biomarker of neuropathic pain. Its detection in vivo, using IONP-enhanced MRI, may be further developed as a tool for neuropathic pain diagnosis and management.


Neurosurgery ◽  
2019 ◽  
Vol 86 (5) ◽  
pp. E436-E441 ◽  
Author(s):  
Lindsey Freeman ◽  
Osmond C Wu ◽  
Jennifer Sweet ◽  
Mark Cohen ◽  
Gabriel A Smith ◽  
...  

Abstract BACKGROUND AND IMPORTANCE Lesioning procedures are effective for trigeminal neuralgia (TN), but late pain recurrence associated with sensory recovery is common. We report a case of recurrence of type 1A TN and recovery of facial sensory function after trigeminal rhizotomy associated with collateral sprouting from upper cervical spinal nerves. CLINICAL PRESENTATION A 41-yr-old woman presented 2 yr after open left trigeminal sensory rhizotomy for TN with pain-free anesthesia in the entire left trigeminal nerve distribution. Over 18 mo, she developed gradual recovery of facial sensation migrating anteromedially from the occipital region, eventually extending to the midpupillary line across the distribution of all trigeminal nerve branches. She reported recurrence of her triggered lancinating TN pain isolated to the area of recovered sensation with no pain in anesthetic areas. Nerve ultrasound demonstrated enlargement of ipsilateral greater and lesser occipital nerves, and occipital nerve block restored facial anesthesia and resolved her pain, indicating that recovered facial sensation was provided exclusively by the upper cervical spinal nerves. She underwent C2/C3 ganglionectomy, and ganglia were observed to be hypertrophic. Postoperatively, trigeminal anesthesia was restored with complete resolution of pain that persisted at 12-mo follow-up. CONCLUSION This is the first documented case of a spinal nerve innervating a cranial dermatome by collateral sprouting after cranial nerve injury. The fact that typical TN pain can occur even when sensation is mediated by spinal nerves suggests that the disorder can be centrally mediated and late failure after lesioning procedures may result from maladaptive reinnervation.


2011 ◽  
Vol 7 (6) ◽  
pp. 676-680 ◽  
Author(s):  
Yi-gang Huang ◽  
Liang Chen ◽  
Yu-dong Gu ◽  
Guang-rong Yu

Object In Erb palsy, the C-7 spinal nerve has been found to be more subject to avulsion than the C-5 and C-6 spinal nerves. This study investigated the morphological and biomechanical characteristics of the semiconic posterosuperior ligaments (SPLs) at the C-5, C-6, and C-7 spinal nerves in neonates. Methods Twenty-four brachial plexuses from 12 fresh neonate cadavers were used in this study. In 12 brachial plexuses from 6 cadavers, the following studies were performed with respect to the SPLs at the C-5, C-6, and C-7 spinal nerves: gross observation of morphological and histological characteristics; measurement of length, thickness, and width; and a semiquantitative analysis of collagen. In the other 6 cadavers, biomechanical tension testing was performed bilaterally on the C5–7 SPLs to assess the tensile strength of the ligaments. Results The C5–7 spinal nerves are fixed to the transverse process through the SPL, a structure not observed at the C-8 and T-1 spinal nerves. Except for the width of the SPL insertion on the spinal nerve, which was found to increase gradually from C-5 to C-7, there was no statistically significant difference in the dimensions of the C-5, C-6, and C-7 SPLs. The sectional area percentage of collagen was 51% ± 10% in SPLs for C-5, 51% ± 11% for C-6, and 41% ± 10% for C-7; and this percentage was significantly lower in SPLs for C-7 than for C-5 or C-6 (1-way ANOVA, F = 4.3, p = 0.02; Tukey honestly significant difference test, p = 0.04 and 0.04, respectively). Sharpey fibers were observed at the transverse process origin of the SPL at C-5 and C-6 but not at C-7. Biomechanical tension testing showed that the mean failure load was 6.6 ± 0.9 N for the C-5 SPL, 6.4 ± 1.0 N for the C-6 SPL, and 5.4 ± 0.9 N for the C-7 SPL, and the failure load was significantly lower in SPLs at C-7 than in those at C-5 or C-6 (1-way ANOVA, F = 5.1, p = 0.01; Tukey honestly significant difference, p = 0.01 and 0.048, respectively). Nine of 12 C-7 SPLs failed at their origin from the transverse process, while only 4 of 12 C-5 SPLs and 3 of 12 C-6 SPLs failed at the origin site. Conclusions These findings suggest that the lower density of collagen and absence of Sharpey fibers decrease the biomechanical properties of the C-7 SPL, and this may account for the higher frequency of avulsion of the C-7 spinal nerve (in comparison with the C-5 or C-6 nerve) in Erb palsy.


The present research has been- directed tow ards further examination of the distribution of the spinal nerve-roots. It has been pursued in continuance of previous experi­ments dealing with the spinal pairs below the brachial. The communication treats of especially the skin-fields of the cranial and cervico-brachial nerves. In order to obtain a more perfect idea of the scheme of distribution of each entire spinal nerve the muscular fields of the spinal nerves of the limb region have been concurrently determined by separate experiments. Finally, these motor and sensory fields having been delimited, and thus the requisite prelimen to the original aim of the inquiry carried through, the examination of certain spinal reflexes has been proceeded to. I beg to sincerely thank Professor Michael Foster for his kind encouragement throughout.


Author(s):  
Adam Fisch

Chapter 11 gives an overview of the cranial and spinal nerves, and skull base, including spinal and cranial nuclear classification, cranial nerve nuclei, skull foramina, and cavernous sinus.


2017 ◽  
Vol 16 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Mienke Rijsdijk ◽  
Nilesh M. Agalave ◽  
Albert J.M. van Wijck ◽  
Cornelis J. Kalkman ◽  
Roshni Ramachandran ◽  
...  

AbstractBackground and aimsDespite widespread use, the efficacy of neuraxial glucocorticoids for neuropathic painis subject to debate. Since most glucocorticoid actions are mediated through its receptor, we explored the effects of intrathecal methylprednisolone acetate (MPA) on total glucocorticoid receptor (tGR) levels and activation of the glucocorticoid receptor (phosphorylated state = pGR) within the spinal dorsal horn (SDH) and dorsal root ganglion (DRG) in a spinal nerve ligation (SNL) model in rats.MethodsRats received unilateral ligation of the L5/L6 spinal nerves and were treated with two intrathecal doses of either 400 μg MPA or 0.9% saline with a 72-h interval. Plantar tactile thresholds were measured over time. Seven days after drug treatment, DRG and SDH were harvested to assess tGR and pGR levels using immunohistochemistry and qPCR.ResultsAllodynia, defined by lowered tactile withdrawal thresholds after SNL, was unaltered by intrathecal MPA. In saline controls, mRNA levels of tGR did not change after SNL in the DRGs or SDH. tGR and pGR protein levels in the SDH however, significantly increased on the ipsilateral side of SNL compared to the contralateral side and to naïve tissue. When treating rats with MPA, tGR mRNA levels were significantly reduced in the SDH compared to saline controls. tGR and pGR protein levels, however were not significantly lower compared to saline controls.ConclusionsIn intrathecal MPA treated rats, tGR mRNA levels decreased after SNL. However this did not result in lower tGR and pGR protein levels compared to saline controls, and did not decrease ligation-induced mechanical hypersensitivity.ImplicationsIntrathecal MPA treatment after SNL did not result in lower tGR and pGR levels within the SDH and DRG compared to saline controls. In present study we did not differentiate between the various isoforms of the GR which might clarify this finding.


2021 ◽  
pp. 003151252110350
Author(s):  
Karina Noboa ◽  
Joshua Keller ◽  
Kipp Hergenrader ◽  
Terry Housh ◽  
John Paul Anders ◽  
...  

The purpose of the current study was to determine if, and to what extent, sex differences in performance fatigability after a sustained, bilateral leg extension, anchored to a moderate rating of perceived exertion (RPE), could be attributed to muscle size, muscular strength, or pain pressure threshold (PPT) in young, healthy adults. Thirty adults (men: n = 15, women: n = 15) volunteered to complete a sustained leg extension task anchored to RPE = 5 (10-point OMNI scale) as well as pretest and posttest maximal voluntary isometric contraction (MVIC) trials. The fatigue-induced decline in MVIC force was defined as performance fatigability. We used muscle cross-sectional area (mCSA) to quantify muscle size and a dolorimeter to assess PPT. The sustained task induced fatigue such that both men and women exhibited significant ( p < 0.05) decreases in MVIC force from pretest to posttest ( M = 113.3, SD =24.2 kg vs. M = 98.3, SD = 23.1 kg and M = 73.1, SD =14.5 kg vs. M = 64.1, SD = 16.2 kg, respectively), with no significant sex differences in performance fatigability (grand M = 12.6, SD =10.6%). Men, however, exhibited significantly ( p < 0.05) longer time to task failure (TTF) than women ( M = 166.1, SD =83.0 seconds vs. M = 94.6, SD =41.7) as well as greater PPT ( M = 5.9, SD = 2.2 kg vs. M = 3.4, SD =1.1 kg). The only significant predictor of performance fatigability was PPT. In conclusion, differences in PPT, at least in part, mediate variations in TTF during self-paced exercise anchored to a specific RPE and resulting in performance fatigability.


Sign in / Sign up

Export Citation Format

Share Document