scholarly journals Estimating the benefit of well-managed protected areas for threatened species conservation

Oryx ◽  
2018 ◽  
Vol 54 (2) ◽  
pp. 276-284 ◽  
Author(s):  
Stephen G. Kearney ◽  
Vanessa M. Adams ◽  
Richard A. Fuller ◽  
Hugh P. Possingham ◽  
James E. M. Watson

AbstractProtected areas are central to global efforts to prevent species extinctions, with many countries investing heavily in their establishment. Yet the designation of protected areas alone can only abate certain threats to biodiversity. Targeted management within protected areas is often required to achieve fully effective conservation within their boundaries. It remains unclear what combination of protected area designation and management is needed to remove the suite of processes that imperil species. Here, using Australia as a case study, we use a dataset on the pressures facing threatened species to determine the role of protected areas and management in conserving imperilled species. We found that protected areas that are not resourced for threat management could remove one or more threats to 1,185 (76%) species and all threats to very few (n = 51, 3%) species. In contrast, a protected area network that is adequately resourced to manage threatening processes within their boundary could remove one or more threats to almost all species (n = 1,551; c. 100%) and all threats to almost half (n = 740, 48%). However, 815 (52%) species face one or more threats that require coordinated conservation actions that protected areas alone could not remove. This research shows that investing in the continued expansion of Australia's protected area network without providing adequate funding for threat management within and beyond the existing protected area network will benefit few threatened species. These findings highlight that as the international community expands the global protected area network in accordance with the 2020 Strategic Plan for Biodiversity, a greater emphasis on the effectiveness of threat management is needed.

Author(s):  
Wiguna Rahman ◽  
Joana Magos Brehm ◽  
Nigel Maxted ◽  
Jade Phillips ◽  
Aremi R. Contreras-Toledo ◽  
...  

AbstractConservation programmes are always limited by available resources. Careful planning is therefore required to increase the efficiency of conservation and gap analysis can be used for this purpose. This method was used to assess the representativeness of current ex situ and in situ conservation actions of 234 priority crop wild relatives (CWR) in Indonesia. This analysis also included species distribution modelling, the creation of an ecogeographical land characterization map, and a complementarity analysis to identify priorities area for in situ conservation and for further collecting of ex situ conservation programmes. The results show that both current ex situ and in situ conservation actions are insufficient. Sixty-six percent of priority CWRs have no recorded ex situ collections. Eighty CWRs with ex situ collections are still under-represented in the national genebanks and 65 CWRs have no presence records within the existing protected area network although 60 are predicted to exist in several protected areas according to their potential distribution models. The complementarity analysis shows that a minimum of 61 complementary grid areas (complementary based on grid cells) are required to conserve all priority taxa and 40 complementary protected areas (complementary based on existing protected areas) are required to conserve those with known populations within the existing in situ protected area network. The top ten of complementary protected areas are proposed as the initial areas for the development of CWR genetic reserves network in Indonesia. It is recommended to enhanced coordination between ex situ and in situ conservation stakeholders for sustaining the long term conservation of CWR in Indonesia. Implementation of the research recommendations will provide for the first time an effective conservation planning of Indonesia’s CWR diversity and will significantly enhance the country’s food and nutritional security.


Oryx ◽  
2011 ◽  
Vol 45 (2) ◽  
pp. 191-200 ◽  
Author(s):  
Héctor M. Hernández ◽  
Carlos Gómez-Hinostrosa

AbstractWe used distribution data of 121 cactus species endemic to the Chihuahuan Desert to test the effectiveness of the region’s protected area network. The analysis of species distribution using a 30′ latitude × 30′ longitude grid facilitated the identification and categorization of areas of endemism. We found a low degree of coincidence between protected areas and the areas of cactus endemism, and only 63.6% of the 121 species occur in protected areas. A complementarity analysis showed that 10 of the protected areas contain the 77 species that occur in protected areas. The four top priority areas protect 65 (84.4%) of these 77 species The 44 unprotected species are mainly micro-endemic and taxonomically distinctive taxa widely scattered in the region. The complementarity analysis applied to these species showed that all of them can be contained in a minimum of 24 grid squares, representing 32.9% of the total area occupied. Their strong spatial dispersion, along with their narrow endemism, is a major conservation challenge. We conclude that the current protected area network is insufficient to protect the rich assemblage of cacti endemic to the Chihuahuan Desert. Conservation efforts in this region should be enhanced by increasing the effectiveness of the already existing protected areas and by the creation of additional protected areas, specifically micro-reserves, to provide refuge for the unprotected species.


2015 ◽  
Vol 26 (2) ◽  
pp. 214-224 ◽  
Author(s):  
JONATHAN C. SLAGHT ◽  
SERGEI G. SURMACH

SummaryBlakiston's Fish-owl Bubo blakistoni is classified as ‘Endangered’ by IUCN; this species is associated with riparian old-growth forests in north-east Asia, a landscape threatened by a variety of impacts (e.g. logging, agricultural development, human settlement). We examined a 20,213 km2 study area in Primorye, Russia, and assessed the ability of the protected area network to conserve Blakiston's Fish-owls by analysing resource selection of radio-marked individuals. Based on resource selection functions, we predicted that 60–65 Blakiston's fish-owl home ranges could occur within the study area. We found that the protected area network within our study area contained only 19% of optimal Blakiston's fish-owl habitat and contained only eight potential home ranges (five of these within a single protected area—Sikhote-Alin Biosphere Reserve). We also found that 43% of optimal Blakiston's Fish-owl habitat was within current logging leases; lands capable of supporting habitat equivalent to 24 home ranges. The remaining optimal habitat (38%) was on federal land and potentially contained 28–33 Blakiston's Fish-owl home ranges. The current protected area network, by itself, is not sufficient to conserve the species because relatively few home ranges are actually protected. Therefore, outside of protected areas, we recommend protecting specific locations within potential home ranges that likely contain suitable nest and foraging sites, maintaining integrity of riparian areas, modifying road construction methods, and closing old and unused logging roads to reduce anthropogenic disturbance to the owls and the landscape.


2020 ◽  
Vol 8 ◽  
Author(s):  
Martine S. Jordaan ◽  
Albert Chakona ◽  
Dewidine van der Colff

Freshwater systems and their associated biodiversity are among the most threatened ecosystems globally. The greatest threats to freshwater fishes are the introduction and spread of non-native species, pollution, habitat degradation and loss, and overexploitation. While many regions across the world contain extensive networks of protected areas, these are largely ineffective for protecting riverine systems and their biodiversity. This is because they were designed with the aim of prioritising conservation of terrestrial biodiversity, with limited or no consideration for aquatic systems. The Cape Fold Ecoregion, located within the Western and Eastern Cape Provinces of South Africa, is home to the highest percentage of threatened freshwater fishes in the country. The region has an extensive protected area network that protects a wide array of ecosystems, but limited information exists on the role of protected areas in conserving the endemic freshwater fish fauna of this region. This study evaluated the value of protected areas for protection of freshwater fishes in the Western Cape Province by setting species conservation targets and then intersecting species distribution data with protected area polygons. Conservation targets were set to protect the minimum viable population required for long-term persistence, with a minimum of 10 subpopulations as a target. This, along with other factors such as population viability and protected area effectiveness was used to determine whether a species was effectively protected by the current protected area network. Species were classified into one of four categories; (1) “well protected,” (2) “moderately protected,” (3) “poorly protected,” and (4) “not protected.” Our results indicate that the majority of native fishes are inadequately protected within the current protected area network in the province. This is mainly a result of the linear nature of riverine ecosystems that exposes them to impacts and threats that emanate from outside of the protected area. These limitations are not unique to the CFE, and our findings have broader implications as they highlight the need for integrating both the riverine and terrestrial ecosystems in the design, expansion and management of protected areas. This will enhance and maximise conservation and protection of riverine systems and their unique biodiversity.


Oryx ◽  
2015 ◽  
Vol 50 (2) ◽  
pp. 336-343 ◽  
Author(s):  
Sanjay Gubbi ◽  
Kaushik Mukherjee ◽  
M.H. Swaminath ◽  
H.C. Poornesha

AbstractConservation of large carnivores is challenging as they face various threats, including habitat loss and fragmentation. One of the current challenges to tiger Panthera tigris conservation in India is the conversion of habitat to uses that are incompatible with conservation of the species. Bringing more tiger habitat within a protected area system and in the process creating a network of connected protected areas will deliver dual benefits of wildlife conservation and protection of watersheds. Focusing on the southern Indian state of Karnataka, which holds one of the largest contiguous tiger populations, we attempted to address this challenge using a conservation planning technique that considers ecological, social and political factors. This approach yielded several conservation successes, including an expansion of the protected area network by 2,385 km2, connection of 23 protected areas, and the creation of three complexes of protected areas, increasing the protected area network in Karnataka from 3.8 to 5.2% of the state's land area. This represents the largest expansion of protected areas in India since the 1970s. Such productive partnerships between government officials and conservationists highlight the importance of complementary roles in conservation planning and implementation.


2019 ◽  
Author(s):  
Germán Baldi

AbstractProtected areas are one of the most effective tools for nature conservation. Consequently, almost all countries have agreed to set increasingly demanding goals for the expansion of their protected area systems. However, there is a large disparity among countries, and research on the cultural drivers of differences remains quite unexplored. Here, we explore the relationship between protected extent and a limited spectrum of socio-economic characteristics, making focus on size and power features. Protected areas under strict conservation categories (I to IV, IUCN) were considered for 195 countries, and relationships were modeled by means of LOESS regressions, violin plots, and a random forest ensemble learning method. Larger and more powerful countries (in terms of land area, gross domestic product, or military expenditure) protect less and in relatively smaller units than smaller and less powerful countries. Out of the twenty most extensive countries of the world, only two exceed 10% of protection. This situation is problematic since an effective growth of the global protected area network depends on the willingness of larger and more powerful countries. We propose different hypotheses a posteriori that explain the role of size and power driving protection. These hypotheses involve direct mechanisms (e.g., the persuasive capacity of large countries) or mechanisms that mediate the interactions of some others (e.g., tourism contribution to GDP and insularity). Independently of mechanisms, our results emphasize the conservation responsibilities of large and powerful countries and contribute to envision conservation scenarios in the face of changes in the number and size of countries.


2020 ◽  
Vol 12 (21) ◽  
pp. 9252
Author(s):  
Sebastián Cordero ◽  
Gabriel J. Castaño-Villa ◽  
Francisco E. Fontúrbel

Biodiversity loss is a central issue in conservation biology, with protected areas being the primary approach to stop biodiversity loss. However, education has been identified as an important factor in this regard. Based on a database of threatened species and socio-economic features for 138 countries, we tested whether more protected areas or more education investment is associated with a lower proportion of threatened species (for different groups of vertebrates and plants). For this, we fitted generalized linear mixed-effects models (GLMM) to assess the relative importance of socio-economic variables on the proportion of threatened species. We found that education investment was negatively associated with the proportion of threatened species in 2007 and 2017, as well as with their change rates. Conversely, the percentage of protected land was significant for reptiles but showed weak relationships with other groups. Our results suggest that only increasing protected areas will not stop or reduce biodiversity loss, as the context and people’s attitudes towards wildlife also play major roles here. Therefore, investing in education, in addition to protected areas, would have the missing positive effect on achieving effective species conservation actions worldwide.


Oryx ◽  
2012 ◽  
Vol 46 (2) ◽  
pp. 253-259 ◽  
Author(s):  
David Brugière

AbstractThe Republic of Guinea has one of the highest diversities of mammal species in West Africa. However, its protected area network is poorly developed and little quantitative information has been available to help guide national conservation strategies. I therefore examined the distribution of antelopes and related species (families Bovidae and Tragulidae) across 17 sites, including four protected areas, to determine how the existing protected area network contributes to the conservation of antelope species and where action should best be focused for the conservation of this group. A total of 21 species of antelope have been recorded in the 17 sites; four of these species are absent from the four protected areas. An iterative heuristic complementarity approach was used to determine an irreplaceability index, which accounts for both species richness and species rarity, for each of the sites. The Kankan Faunal Reserve and Nimba Strict Nature Reserve have the second and fourth highest irreplaceability indices, respectively. The two other protected areas have moderate to very low irreplaceability indices, showing that they protect species widespread throughout the 17 sites. The Ziama Forest has the highest index (because it contains a high number of species and of globally threatened species), highlighting the significance of this site. I discuss the importance of the other sites and the threats affecting antelopes in Guinea, and make recommendations to improve the study and conservation of antelope species in the country.


2021 ◽  
Vol 36 (5) ◽  
pp. 1281-1309
Author(s):  
Ugyen Penjor ◽  
Żaneta Kaszta ◽  
David W. Macdonald ◽  
Samuel A. Cushman

Abstract Context Understanding the environmental and anthropogenic factors influencing habitat selection of multiple species is a foundation for quantifying human impacts on biodiversity and developing effective conservation measures. Objectives To determine the effect of multiple scales of environmental/topographic and anthropogenic variables and landscape patterns on habitat suitability of terrestrial mammals in Bhutan, assess the effectiveness of the current protected area network, identify areas of high species richness outside of the existing protected area, and evaluate the potential effectiveness of indicator and umbrella species for conservation planning. Methods We modelled multi-scale habitat selection of sixteen species of terrestrial mammals across Bhutan using data from a nation-wide camera trap survey. We used the predicted species distribution maps to assess the multi-species conservation effectiveness of the existing protected area network. We performed simulations to identify high priority areas for multiple species based on their habitat suitability, proximity to existing protected areas and overall connectivity within the predicted distribution of species. We used correlation analysis among predicted occurrence maps and multivariate cluster analysis to identify potential indicator species. We evaluated the potential utility of each species as umbrella species by assessing how well optimal protected areas for that species would protect suitable habitat for all 16 species simultaneously. Results Protected areas and forest cover were strongly associated with habitat use of most modelled species. Additionally, topographical features, like terrain roughness and slope position, contributed to habitat selection of multiple species, but often in different ways. Environmental and topographical variables were mostly selected at medium to broad scales. Anthropogenic variables (agriculture and built-up areas) were negatively associated with habitat suitability of most species at both fine and broad scales. Conservation effectiveness assessment of existing protected areas found protected areas in south-central Bhutan have high effectiveness in terms of both mean and total richness protected. Similarly, biological corridors in the south-central region offered high mean richness protection. Our simulation of optimal areas for additional protection found areas abutting protected areas in southern Bhutan offered high relative species richness protection. Our umbrella species analysis found muntjac, wild pig, serow, sambar and Asian golden cat are the most effective umbrella species for broader biodiversity protection. Our indicator species analysis found tiger, gaur, dhole, clouded leopard, Asian black bear and common leopard as effective indicator species. Conclusions This study highlights the need to protect optimally located species-rich areas outside the current protected areas. This kind of multi-species habitat assessment provides important information to optimize future conservation and development plans at national and regional scales.


Sign in / Sign up

Export Citation Format

Share Document