The effects of temperature and other factors upon the establishment and survival ofPomphorhynchus laevis(Acanthocephala) in goldfish,Carassius auratus

Parasitology ◽  
1972 ◽  
Vol 65 (2) ◽  
pp. 283-294 ◽  
Author(s):  
C. R. Kennedy

Goldfish were experimentally infected with different population densities of the acanthocephalanPomphorhynchus laevis, and maintained at different temperatures. The density of infection had no effect upon the establishment of the parasite, but a 12°C rise in water temperature reduced the recovery after one week by 30%. Thereafter there was a continuous loss of parasites during the course of infection. The rate of this loss was independent of worm burden and temperature, but increased under conditions of host starvation. Both male and female parasites attached themselves in the same region of the alimentary tract, with a mean position about 19% along its length. They remained in that region throughout the course of infection, and the population did not migrate down the intestine with increasing age. In starved fish, the region of attachment was nearer the oesophagus, at low temperatures nearer the rectum, and when crowded the occupied region extended anteriorly. Male worms were unable to establish as easily as females, but once established survived better, and the sex ratio after two weeks was in favour of males. The results are compared with the results of studies on other acanthocephalans and on fish-cestode systems. It is recognized that although the establishment of fish acanthocephala is affected by temperature to a lesser extent than that of some fish cestodes, temperature in conjunction with changes in fish diet is a major control upon the flow of parasites through acanthocephalan-fish parasite systems. The significance of the results to the interpretation of data based on field observations is discussed.

1965 ◽  
Vol 43 (3) ◽  
pp. 345-353 ◽  
Author(s):  
D. J. C. Friend

The number of spikelets on the differentiating inflorescence and the ear at anthesis was highest at high light intensities and at low temperatures. The length of the developing inflorescence and the ear, the height of the main stem, and the total plant dry weight at the time of anthesis were also greatest under these conditions.These results are related to differential effects of temperature and light intensity on the rates and duration of apical elongation, morphological development of the ear, and spikelet formation.


1962 ◽  
Vol 40 (7) ◽  
pp. 1169-1174 ◽  
Author(s):  
Arthur Hillier Houston

Cold death in goldfish acclimated to 20–22 °C and abruptly transferred to temperatures of 2.5–3.5 °C was accompanied by a decrease in plasma chloride concentration, but no marked change in tissue chloride level. While tissue water content remained relatively steady variations in chloride space indicated a progressive shift of fluids from the cellular to the extracellular phase. Although the data indicate some loss of osmoregulatory control during exposure to low temperatures, the variations noted were not considered to be great enough to have alone accounted for the death of the animals.


2021 ◽  
Author(s):  
Al Kovaleski ◽  
Jason Londo

<p>Budbreak is one of the most observed and studied phenological phases in perennial plants. Historically, two effects of temperature are used to model budbreak: the accumulation of heat units (forcing); and the accumulation of time spent at low temperatures (chilling). These two effects have a well-established negative correlation: the more chilling, the less forcing is required to reach budbreak. However, prediction of budbreak remains a challenge, as even artificial warming experiments do not match changes in observed budbreak timing during the past few decades of climate warming. The cold hardiness of buds is, however, largely ignored in estimations of timing to budbreak. Cold hardiness level fluctuates throughout the winter as temperatures change, constantly altering the initiation point of deacclimation. During budbreak assays, cold hardiness loss is extremely slow (low deacclimation rate) at low chill accumulation, and increases to a maximum at high chill accumulation. By standardizing deacclimation rates for each species based on the maximum observed, a deacclimation potential describes dormancy fulfillment. Our studies show that deacclimation rates vary at different temperatures demonstrating the effect of forcing is non-linear. We show that the concept of variable chilling requirements for satisfying dormancy (high chill vs. low chill) is largely erroneous and instead these phenotypes reflect previously unmeasured differences between species or genotypes regarding the interaction between cold hardiness state and deacclimation potential. Our studies show that forcing responses (maximum rates of deacclimation) are normally distributed within a species, and are a heritable trait. Three effects of temperature are thus necessary to describe contemporary phenology patterns as well as predict future impacts of climate change: the accumulation of chill, the forcing temperature response, and the cold hardiness of buds.</p>


Sign in / Sign up

Export Citation Format

Share Document