plasma chloride
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 7)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Bo Ye ◽  
Mingfeng Huang ◽  
Tao Chen ◽  
Gordon Doig ◽  
Bin Wu ◽  
...  

Introduction/aim: The supraphysiologic chloride concentration of normal saline may contribute to acute kidney injury (AKI). Balanced crystalloids can decrease chloride concentration and AKI in critically ill patients. We aim to test the hypothesis that, in patients with predicted severe acute pancreatitis (pSAP), compared with saline, fluid therapy with balanced crystalloids will decrease plasma chloride concentration.Methods/Design: This is a multicenter, stepped-wedge, cluster-randomized, controlled trial. All eligible patients presenting to the 11 participating sites across China during the study period will be recruited. All sites will use saline for the first month and sequentially change to balanced crystalloids at the pre-determined and randomly allocated time point. The primary endpoint is the plasma chloride concentration on day 3 of enrollment. Secondary endpoints will include major adverse kidney events on hospital discharge or day 30 (MAKE 30) and free and alive days to day 30 for intensive care admission, invasive ventilation, vasopressors, and renal replacement therapy. Additional endpoints include daily serum chloride and sequential organ failure assessment (SOFA) score over the first seven days of enrollment.Discussion: This study will provide data to define the impact of normal saline vs. balanced crystalloids on plasma chloride concentration and clinical outcomes in pSAP patients. It will also provide the necessary data to power future large-scale randomized trials relating to fluid therapy.Ethics and Dissemination: This study was approved by the ethics committee of Jinling Hospital, Nanjing University (2020NZKY-015-01) and all the participating sites. The results of this trial will be disseminated in peer-reviewed journals and at scientific conferences.Trial registration: The trial has been registered at the Chinese Clinical Trials Registry (ChiCTR2100044432).


2021 ◽  
Vol 9 ◽  
Author(s):  
Ross W. Finlay ◽  
Russell Poole ◽  
Ger Rogan ◽  
Eileen Dillane ◽  
Deirdre Cotter ◽  
...  

Migratory species must cope with different parasite communities in different environments, but little is known about the ecophysiological effects of parasites on migratory performance. Some species/strains of acanthocephalan parasites in the genus Pomphorhynchus use anadromous salmonids as preferred definitive hosts, perforating the intestines, destroying mucosa and inducing inflammation–all of which might affect osmoregulatory function during transition between freshwater and marine environments. We used genetic barcoding to identify acanthocephalans in the intestines of wild Irish Atlantic salmon (Salmo salar L.) smolts as being the recently taxonomically resurrected species Pomphorhynchus tereticollis. We then investigated whether natural infection intensities of this parasite were associated with reduced osmoregulatory performance, as measured by plasma chloride concentrations, or potentially elevated stress, as measured by blood glucose, of hosts in freshwater or saltwater environments (24 or 72 h in ∼26PPT salt water, reflecting salinities of coastal waters through which smolts migrate). Although infection prevalence was high amongst sampled smolts, no associations were found within or across treatment groups between parasite abundance and plasma chloride concentrations or blood glucose levels. We found no intestinal perforations that would indicate P. tereticollis had recently vacated the intestines of smolts in either of the saltwater groups. Exploratory sampling in the 2 years preceding the experiment indicated that parasite prevalence and abundance are consistently high and comparable to the experimental individuals. Collectively, these results indicate that naturally occurring abundances of P. tereticollis do not reduce osmoregulatory function or affect blood glucose content in fresh water or within 72 h of entering coastal waters, although delayed pathologies affecting marine survival may occur. Future consideration of ecophysiological interactions between anadromous fish hosts and their parasites across different osmotic environments should provide general insights into coevolution between migratory hosts and their parasites.


2021 ◽  
Vol 80 (2) ◽  
Author(s):  
Antonio Bjørn Stefano Poléo ◽  
Birgitte Marie Kjelsberg ◽  
Nina Alstad Rukke ◽  
Leif Asbjørn Vøllestad

Freshwater acidification is characterised by elevated concentrations of aqueous aluminium. Global emissions of acidifying agents are reduced due to international agreements, and freshwater acidification has shifted from chronic to a more episodic character. The recovery of fish populations in acidified areas is likely to depend on the individual’s ability to recover from short-time aluminium exposures. We exposed brown trout (Salmo trutta) to an Al-rich medium, nominal concentration 600 µg L–1, for 0.5, 2, 6, 8 and 11 hours, before transfer to circumneutral Al-poor water for recovery. As controls, fish were either exposed for 11 hours to an acidified Al-poor medium or to untreated water. Some mortality during the first 24 hours of the recovery period occurred in fish exposed for 11, 8 and 6 hours to aluminium. No mortality during recovery was observed in the remaining groups. Aluminium exposure led to increased haematocrit and plasma lactate concentration, decreased plasma chloride concentration, deposition of aluminium on gill surfaces, and morphological alteration of the gill structures. The responses depended on exposure time. Aluminium deposited on the gill disappeared and plasma lactate levels were at control levels after 1 day in the recovery water, while haematocrit and plasma chloride levels were at control levels after 14 days of recovery. Gills in fish exposed to aluminium for 11 hours were almost fully recovered after 14 days. We conclude that the toxic response in brown trout exposed to an acutely toxic aluminium challenge is reversible. Moreover, the first 24 hours after aluminium exposures is the most critical period for the fish recovery. Further, it takes no more than 14 days for brown trout to fully recover from an acute toxic aluminium exposure, and only 1 day if the aluminium challenge is moderate.


2020 ◽  
Vol 223 (18) ◽  
pp. jeb220251 ◽  
Author(s):  
Stephen D. McCormick ◽  
Meghan L. Taylor ◽  
Amy M. Regish

ABSTRACTOur current understanding of the hormonal control of ion regulation in aquatic vertebrates comes primarily from studies on teleost fishes, with relatively little information on more basal fishes. We investigated the role of cortisol in regulating seawater tolerance and its underlying mechanisms in an anadromous chondrostean, the Atlantic sturgeon (Acipenser oxyrinchus). Exposure of freshwater-reared Atlantic sturgeon to seawater (25 ppt) resulted in transient (1–3 day) increases in plasma chloride, cortisol and glucose levels and long-term (6–14 day) increases in the abundance of gill Na+/K+/2Cl− cotransporter (NKCC), which plays a critical role in salt secretion in teleosts. The abundance of gill V-type H+-ATPase, which is thought to play a role in ion uptake in fishes, decreased after exposure to seawater. Gill Na+/K+-ATPase activity did not increase in 25 ppt seawater, but did increase in fish gradually acclimated to 30 ppt. Treatment of Atlantic sturgeon in freshwater with exogenous cortisol resulted in dose-dependent increases in cortisol, glucose and gill NKCC and H+-ATPase abundance. Our results indicate that cortisol has an important role in regulating mechanisms for ion secretion and uptake in sturgeon and provide support for the hypothesis that control of osmoregulation and glucose by corticosteroids is a basal trait of jawed vertebrates.


2020 ◽  
Vol 318 (2) ◽  
pp. R410-R417 ◽  
Author(s):  
A. Barany ◽  
C. A. Shaughnessy ◽  
J. Fuentes ◽  
J. M. Mancera ◽  
S. D. McCormick

Lampreys are the most basal vertebrates with an osmoregulatory strategy. Previous research has established that the salinity tolerance of sea lamprey increases dramatically during metamorphosis, but underlying changes in the gut have not been examined. In the present work, we examined changes in intestinal function during metamorphosis and seawater exposure of sea lamprey ( Petromyzon marinus). Fully metamorphosed juvenile sea lamprey had 100% survival after direct exposure to 35 parts per thousand seawater (SW) and only slight elevations in plasma chloride (Cl−) levels. Drinking rates of sea lamprey juveniles in seawater were 26-fold higher than juveniles in freshwater (FW). Na+-K+-ATPase (NKA) activity in the anterior and posterior intestine increased 12- and 3-fold, respectively, during metamorphosis, whereas esophageal NKA activity was lower than in the intestine and did not change with development. Acclimation to SW significantly enhanced NKA activity in the posterior intestine but did not significantly change NKA activity in the anterior intestine, which remained higher than that in the posterior intestine. Intestinal Cl− and water uptake, which were observed in ex vivo preparations of anterior and posterior intestine under both symmetric and asymmetric conditions, were higher in juveniles than in larvae and were similar in magnitude of those of teleost fish. Inhibition of NKA by ouabain in ex vivo preparations inhibited intestinal water absorption by 64%. Our results indicate drinking and intestinal ion and water absorption are important to osmoregulation in SW and that preparatory increases in intestinal NKA activity are important to the development of salinity tolerance that occurs during sea lamprey metamorphosis.


2019 ◽  
Vol 97 (6) ◽  
pp. 567-572
Author(s):  
Brittany Bard ◽  
James D. Kieffer

The shortnose sturgeon (Acipenser brevirostrum Lesueur, 1818) is a species of special concern in Canada, but little is known about their thermal biology. Information on the upper thermal tolerance of shortnose sturgeon becomes valuable for predicting future survival particularly with climate change and improving species management. Using a modified critical thermal maximum (CTmax) methodology, the objective is to determine whether previous thermal stress affects the thermal tolerance of juvenile shortnose sturgeon when exposed to a second thermal stress event. Prior exposure to thermal stress (CTmax1) did not affect the thermal tolerance (CTmax2) of juvenile shortnose sturgeon when a 24 h recovery period was allotted between tests. However, a significant increase in thermal tolerance occurred when the recovery time between the two thermal challenges was 1 h. Plasma glucose, lactate, and osmolality were all significantly affected by thermal stress, but values returned to control levels within 24 h. Hematocrit and plasma chloride concentrations were not significantly affected by thermal stress. All fish survived the CTmax testing. The data indicate that the thermal tolerance of juvenile shortnose sturgeon is modified when multiple thermal stresses occur closer together (1 h) but not if separated by a longer time period (24 h).


2018 ◽  
Vol 96 (8) ◽  
pp. 913-919 ◽  
Author(s):  
Adam T. Downie ◽  
Hannah Wallace ◽  
Samantha Taylor ◽  
James D. Kieffer

Juvenile shortnose sturgeon (Acipenser brevirostrum Lesueur, 1818) were exposed to seawater and freshwater for 24 h to evaluate the osmoregulatory capabilities over a seasonal temperature gradient (5, 10, 15, 20 °C). Additionally, juveniles were exposed to 5 °C seawater and freshwater over 72 h to evaluate survival and osmoregulatory capacity under cold water conditions. Osmoregulatory capability was evaluated using standard metrics: survival rate, mass loss, plasma chloride ion (Cl–) concentrations, osmolality, oxygen-carrying variables, and energy metabolites. Three mortalities occurred following 24 h exposure to 20 °C seawater (73% survival) and one mortality occurred within 72 h in 5 °C seawater (89% survival). Plasma Cl– concentrations and osmolality were elevated in seawater-exposed juveniles at every exposure time, regardless of temperature. The least mass was lost in juveniles exposed to 5 and 10 °C seawater, versus 15 and 20 °C seawater. Low mass loss is likely due to a lower metabolic rate and lower ventilation, which would slow the rate by which osmotic stress would occur under cold conditions.


2018 ◽  
Vol 75 (8) ◽  
pp. 1319-1328 ◽  
Author(s):  
Amy M. Regish ◽  
John T. Kelly ◽  
Michael F. O’Dea ◽  
Stephen D. McCormick

Atlantic salmon (Salmo salar) smolts are sensitive to acid rain and associated increases in dissolved inorganic aluminum (Al) resulting in decreased seawater tolerance at this critical life stage. Salmon have two major isoforms of the catalytic alpha subunit of Na+/K+-ATPase (NKA), with NKAα1a being the major freshwater (FW) isoform and NKAα1b the major seawater (SW) isoform. Here we evaluate physiological markers of SW preparedness and NKAα1a and NKAα1b isoforms after short-term exposure to acidified water and acidified water with added Al (acid–Al). Atlantic salmon smolts were exposed to low ion FW (Control), low ion acidic water (pH 5.2; acid), and low ion acidic water (pH 5.2) with moderate levels of added inorganic Al (35 μg·L−1; acid–Al) for 4 days. Acid exposure resulted in loss of salinity tolerance (higher plasma chloride (Cl) after SW exposure) and significantly decreased the levels of gill NKAα1b but not NKAα1a protein abundance. Acid–Al exposure resulted in loss of plasma Cl in FW and higher plasma Cl in SW and decreased NKAα1a and NKAα1b abundance. The loss of salinity tolerance in smolts can be explained by the differential sensitivity of NKA isoforms to acid.


Sign in / Sign up

Export Citation Format

Share Document