Nematodirus battus: structure of the body wall of the adult

Parasitology ◽  
1983 ◽  
Vol 86 (3) ◽  
pp. 481-488 ◽  
Author(s):  
Jean Martin ◽  
D. L. Lee

SUMMARYMales of Nematodirus battus have a body wall composed of a longitudinally ridged cuticle made up of 8 layers, a hypodermis and a layer of longitudinal muscle cells which are divided into 4 sectors by the hypodermal cords. There is a characteristic cephalic inflation of the cuticle in both sexes. The structure of the body wall in the anterior half of the female is similar to that of the male. In the posterior half of the female the cuticle is not ridged and has 7 layers; the longitudinal muscles are reduced in number and the lateral hypodermal cords increasingly extend dorsally and ventrally along the length of the posterior part of the nematode and come to occupy most of the lateral sectors of the body. The possible significance of these modifications in the structure of the female nematode are discussed.

1925 ◽  
Vol s2-69 (275) ◽  
pp. 385-398
Author(s):  
L. EASTHAM

1. The proximal regions of the Malpighian tubules of Drosopbila funebris and Calliphora erythro cephala are supplied with systems of circular and longitudinal muscles external to the basement membrane. 2. These muscles are continuous with those of the mid-gut. 3. There is a terminal muscle to each anterior tubule in Drosophila funebris connected to the alar muscles of the pericardial septum. 4. Peristalsis has been observed in the proximal regions of the tubules, caused by the circular muscles. 5. The tubules exhibit a waving movement, probably due to the longitudinal muscle-bands of the lower or proximal ends of the tubules. 6. Calcium carbonate is stored in the terminal portions of the anterior tubules of Drosophila funebris. 7. This calcium carbonate is not eliminated at the beginning of metamorphosis, but is passed to the gut about the sixth day of pupal life, and is only expelled from the body on the emergence of the adult. 8. Calcium carbonate is found in the Malpighian tubules of the adult Drosophila funebris.


1923 ◽  
Vol 5 (3) ◽  
pp. 327-333 ◽  
Author(s):  
A. R. Moore

1. By the use of preparations of earthworm in which the cutaneous receptors have been anesthetized with a solution of M/8 MgCl2, it is shown that peristalsis can be initiated by tension alone. 2. The receptors of the tension reflex are the intermyal sensory cells of the ventral region of the body wall. 3. It is concluded that Straub obtained the tension reflex because his preparations contained the intermyal receptors; Budington was unable to observe the tension reflex in any preparation from which the intermyal receptors had been removed. 4. Intermyal receptors are the receptors of the following reaction: Passive unilateral tension of the posterior part of an earthworm induces active homolateral tension of the musculature of the anterior segments, and results in the course of progress being brought into line with the enforced orientation of the tail. This reaction is termed the homostrophic reflex. 5. The receptors for the reaction are distributed throughout the entire length of the worm, the effectors are limited to the anterior 15 to 20 segments. The impulse is conducted by the ventral nerve cord. 6. The interaction of the homostrophic reflex and tropisms is considered.


1954 ◽  
Vol s3-95 (30) ◽  
pp. 251-270
Author(s):  
G. P. WELLS

The mechanism of proboscis movement is analysed in detail in Arenicola marina L. and A. ecaudata Johnston, and discussed in relation to the properties of the hydrostatic skeleton. Proboscis activity is based on the following cycle of movements in both species. Stage I. The circular muscles of the body-wall and buccal mass contract; the head narrows and lengthens. Stage IIa. The circular muscles of the mouth and buccal mass relax; the gular membrane (or ‘first diaphragm’ of previous authors) contracts; the mouth opens and the buccal mass emerges. Stage IIb. The longitudinal muscles of the buccal mass and body-wall contract; the head shortens and widens and the pharynx emerges. Stage III. As Stage I. The two species differ anatomically and in their hydrostatic relationships. In ecaudata, the forward movement of body-fluid which extrudes and distends the proboscis is largely due to the contraction of the gular membrane and septal pouches. In marina, the essential mechanism is the relaxation of the oral region which allows the general coelomic pressure to extrude the proboscis. The gular membrane of marina contracts as that of ecaudata does, but its anatomy is different and it appears to be a degenerating structure as far as proboscis extrusion is concerned. Withdrawal of the proboscis may occur while the head is still shortening and widening in Stage IIb, or while it is lengthening and narrowing in Stage III. The proboscis is used both in feeding and in burrowing; in the latter case nothing enters through the mouth; the difference is largely caused by variation in the timing of withdrawal relative to the 3-stage cycle.


1925 ◽  
Vol s2-69 (274) ◽  
pp. 245-290
Author(s):  
A. J. GROVE

During the sexual congress of L.terrestris, the co-operating worms become attached to one another in a head-to-tail position in such a way that segments 9-11 of one are opposed to the clitellum of the other, and vice versa. At these points the attachment between the worms is an intimate one, assisted by the secretion of the glands associated with the diverticula of the setal pores found in certain segments, and is reinforced by the mutual penetration of the setae into the opposed body-surfaces. There is also a slighter attachment between segment 26 of one and 15 of the other. Each worm is enclosed in a slime-tube composed of mucus secreted from the epidermis. The exchange of seminal fluid is a mutual one. The fluid issues from the apertures of the vasa deferentia in segment 15, and is conducted beneath the slime-tube in pit-like depressions in the seminal grooves, which extend from segment 15 to the clitellum on each side of the body, to the clitellum, where it accumulates in the space between the lateral surfaces of segments 9-11 of one worm and the clitellum of the other. Eventually it becomes aggregated into masses in the groove between segments 9 and 10, and 10 and 11, and passes thence into the spermathecae. The seminal groove and its pit-like depressions are brought into existence by special muscles lying in the lateral blocks of longitudinal muscles of the body-wall.


Parasitology ◽  
1971 ◽  
Vol 62 (1) ◽  
pp. 35-47 ◽  
Author(s):  
P. J. Whitfield

The mature egg and the acanthor of Moniliformis dubius have been redescribed with special emphasis on the features relevant to the locomotion of this larval acanthocephalan. The movements of acanthors have been analysed by the use of frame by frame study of filmed records of motile acanthors. Acanthors appear to use the same mode of locomotion for hatching, locomotion within the gut of the intermediate host and penetration of the host's gut wall. Movement is produced by a set of spiralled, longitudinal muscles in the body wall of the hind body and two rostellar retractor muscles. This musculature acts both directly on the body wall and indirectly by hydraulic effects via the hydrostatic skeleton of pseudocoelomic fluid. The spiny evertable rostellum and the backward facing spines of the hind body are the means whereby shape changes of the acanthor interact with the immediate environment to produce effective progression.I should like to thank Professor D. Arthur for the provision of laboratory facilities, Dr D. W. T. Crompton for the initial gift of eggs of M. dubius and Mr R. D. Reed for invaluable assistance with microcinematographic technique. The work was carried out during the tenure of a Nuffield Foundation Research Fellowship.


Parasitology ◽  
1996 ◽  
Vol 112 (5) ◽  
pp. 459-467 ◽  
Author(s):  
J. Schmidt ◽  
O. Bodor ◽  
L. Gohr ◽  
W. Kunz

SUMMARYParamyosin, although a widely distributed muscle component among invertebrates, has hitherto not clearly been shown to occur in the muscles of schistosomes. Instead, it has been reported to occur in the tegument. In the present study, a specific antibody reacting with each of 10 isoforms of paramyosin was used for light microscopical immunolocalization in sections of Schistosoma mansoni. Specimens were fixed by a new method to immobilize antigens with uranyl acetate–trehalose–methanol. In cercariae, schistosomula, and adults, the circular and longitudinal muscles of the body wall, the dorsoventral muscles and those surrounding the gut and the pharynx as well as the fast moving cross-striated muscles of the tail of cercariae intensely reacted with the antibody. However, neither immunohistologically nor on Western blots of isolated tegument, were indications found for the presence of paramyosin in the tegument. In vivo phosphorylation and binding of anti-phospho-tyrosine and anti-phospho-serine antibodies show phosphorylation of paramyosin which probably is responsible for the generation of the isoforms.


2011 ◽  
Vol 7 (6) ◽  
pp. 885-888 ◽  
Author(s):  
Shannon P. Gerry ◽  
David J. Ellerby

The body wall muscles of sanguivorous leeches power mechanically diverse behaviours: suction feeding, crawling and swimming. These require longitudinal muscle to exert force over an extremely large length range, from 145 to 46 per cent of the mean segmental swimming length. Previous data, however, suggest that leech body wall muscle has limited capacity for force production when elongated. Serotonin (5-HT) alters the passive properties of the body wall and stimulates feeding. We hypothesized that 5-HT may also have a role in allowing force production in elongated muscle by changing the shape of the length–tension relationship (LTR). LTRs were measured from longitudinal muscle strips in vitro in physiological saline with and without the presence of 10 µM 5-HT. The LTR was much broader than previously measured for leech muscle. Rather than shifting the LTR, 5-HT reduced passive muscle tonus and increased active stress at all lengths. In addition to modulating leech behaviour and passive mechanical properties, 5-HT probably enhances muscle force and work production during locomotion and feeding.


1987 ◽  
Vol 105 (6) ◽  
pp. 2763-2770 ◽  
Author(s):  
J P Ardizzi ◽  
H F Epstein

The nematode Caenorhabditis elegans contains two major groups of muscle cells that exhibit organized sarcomeres: the body wall and pharyngeal muscles. Several additional groups of muscle cells of more limited mass and spatial distribution include the vulval muscles of hermaphrodites, the male sex muscles, the anal-intestinal muscles, and the gonadal sheath of the hermaphrodite. These muscle groups do not exhibit sarcomeres and therefore may be considered smooth. Each muscle cell has been shown to have a specific origin in embryonic cell lineages and differentiation, either embryonically or postembryonically (Sulston, J. E., and H. R. Horvitz. 1977. Dev. Biol. 56:110-156; Sulston, J. E., E. Schierenberg, J. White, and J. N. Thomson. 1983. Dev. Biol. 100:64-119). Each muscle type exhibits a unique combination of lineage and onset of differentiation at the cellular level. Biochemically characterized monoclonal antibodies to myosin heavy chains A, B, C, and D and to paramyosin have been used in immunochemical localization experiments. Paramyosin is detected by immunofluorescence in all muscle cells. Myosin heavy chains C and D are limited to the pharyngeal muscle cells, whereas myosin heavy chains A and B are localized not only within the sarcomeres of body wall muscle cells, as reported previously, but to the smooth muscle cells of the minor groups as well. Myosin heavy chains A and B and paramyosin proteins appear to be compatible with functionally and structurally distinct muscle cell types that arise by multiple developmental pathways.


2018 ◽  
Vol 373 (1758) ◽  
pp. 20170376 ◽  
Author(s):  
Andrey Palyanov ◽  
Sergey Khayrulin ◽  
Stephen D. Larson

To better understand how a nervous system controls the movements of an organism, we have created a three-dimensional computational biomechanical model of the Caenorhabditis elegans body based on real anatomical structure. The body model is created with a particle system–based simulation engine known as Sibernetic, which implements the smoothed particle–hydrodynamics algorithm. The model includes an elastic body-wall cuticle subject to hydrostatic pressure. This cuticle is then driven by body-wall muscle cells that contract and relax, whose positions and shape are mapped from C. elegans anatomy, and determined from light microscopy and electron micrograph data. We show that by using different muscle activation patterns, this model is capable of producing C. elegans -like behaviours, including crawling and swimming locomotion in environments with different viscosities, while fitting multiple additional known biomechanical properties of the animal.  This article is part of a discussion meeting issue ‘Connectome to behaviour: modelling C. elegans at cellular resolution’.


Zootaxa ◽  
2017 ◽  
Vol 4341 (2) ◽  
pp. 243
Author(s):  
YUSUKE YAMANA ◽  
HAYATO TANAKA

A new apodid sea cucumber, Chiridota impatiens sp. nov., is described from the intertidal zone of Okinawa, Japan, and C. rigida Semper, 1867 is also described from the intertidal zone of Wakayama, as new to Japan. C. impatiens sp. nov. is approximately 60–70 mm, with 12 tentacles and 4–7 pairs of digits per tentacle, red or reddish brown in living specimens. The tentacles contain curved rod ossicles, with spinous processes and many branches in C. rigida, however, in C. impatiens sp. nov., the curved rod ossicles are crescent-shaped, sometimes distally, with spinous processes and rarely a few branches on the circumference. In both species, the body wall contains flattened rod ossicles, mostly present along the longitudinal muscle and mesentery, curved rod ossicles primarily in the body wall, and wheel ossicles only in the wheel-papillae. In C. rigida, the contents of the wheel-papillae form a hemispherical sack-shaped structures, in which the teeth-side of the wheel ossicles mostly faces towards the outside of the body. In C. impatiens sp. nov., the contents of the wheel-papillae form a cord-shaped structure (present in both preserved and living specimens), in which the teeth-side of the wheel ossicles faces various directions, and that can be induced to break through the skin of the papillae if stimulated in living specimens. 


Sign in / Sign up

Export Citation Format

Share Document