The anaerobic end-products of helminths

Parasitology ◽  
1984 ◽  
Vol 88 (1) ◽  
pp. 179-198 ◽  
Author(s):  
J. Barrett

Parasitic helminths belong to 3 separate phyla and there is always the danger of over-generalization. The various routes of anaerobic carbohydrate breakdown in parasitic helminth differ in their efficiencies and in their power output. The choice of end-product represents a compromise between these two conflicting forces. In addition, anaerobic pathways must satisfy the redox requirements of the tissues and provide a source of intermediates for synthetic reactions. Other considerations include the metabolic cost of excretion and the effect of end-products on protein structure and function. The different end-products may fulfil additional functions such as pH control, nitrogenous excretion, osmotic regulation, intracellular signalling and the suppression of host responses.A complicating factor in parasitic helminths is the existence of strains with different biochemical characteristics, including marked variation in end-product formation. The various tissues of the same parasite can also produce different end-products and the pattern of end-product formation is influenced by a variety of extrinsic and intrinsic factors such as age, sex, length of incubation, pO2 and availability of substrates. The catabolic pathways of helminths thus show considerable functional adaptation.There is, as yet, no satisfactory explanation as to why helminths do not make the maximum use of any oxygen available to them; and the contribution of oxidative processes to the overall energy balance of parasites probably varies from species to species.The catabolic pathways of adult helminths are derived from the anaerobic pathways present in their free-living relatives. Two main trends are evident, homolactic fermentation and carbon dioxide fixation, the latter involving a partial reverse tricarboxylic acid cycle. In general, homolactic fermentation is found in blood and tissue parasites, carbon dioxide fixation in gut parasites. These two types of metabolism are, of course, in no way absolute, most homolactic fermentors fix carbon dioxide to a certain extent and many parasites which fix carbon dioxide also produce lactate. Parasitic helminths possess a wide range of different catabolic pathways, superimposed upon which is a high degree of functional plasticity.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Karolina Kula ◽  
Agnieszka Kącka-Zych ◽  
Agnieszka Łapczuk-Krygier ◽  
Radomir Jasiński

Abstract The large and significant increase in carbon dioxide concentration in the Earth’s atmosphere is a serious problem for humanity. The amount of CO2 is increasing steadily which causes a harmful greenhouse effect that damages the Earth’s climate. Therefore, one of the current trends in modern chemistry and chemical technology are issues related to its utilization. This work includes the analysis of the possibility of chemical consumption of CO2 in Diels-Alder processes under non-catalytic and catalytic conditions after prior activation of the C=O bond. In addition to the obvious benefits associated with CO2 utilization, such processes open up the possibility of universal synthesis of a wide range of internal carboxylates. These studies have been performed in the framework of Molecular Electron Density Theory as a modern view of the chemical reactivity. It has been found, that explored DA reactions catalyzed by Lewis acids with the boron core, proceeds via unique stepwise mechanism with the zwitterionic intermediate. Bonding Evolution Theory (BET) analysis of the molecular mechanism associated with the DA reaction between cyclopentadiene and carbon dioxide indicates that it takes place thorough a two-stage one-step mechanism, which is initialized by formation of C–C single bond. In turn, the DA reaction between cyclopentadiene and carbon dioxide catalysed by BH3 extends in the environment of DCM, indicates that it takes place through a two-step mechanism. First path of catalysed DA reaction is characterized by 10 different phases, while the second by eight topologically different phases.


1947 ◽  
Vol 170 (2) ◽  
pp. 461-465
Author(s):  
Santiago Grisolia ◽  
Birgit Vennesland

1949 ◽  
Vol 180 (1) ◽  
pp. 299-305 ◽  
Author(s):  
Donald B. Melville ◽  
John G. Pierce ◽  
C.W.H. Partridge

1948 ◽  
Vol 174 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Severo Ochoa ◽  
Erna Weisz-Tabori

2005 ◽  
Vol 280 (18) ◽  
pp. 155-157
Author(s):  
Nicole Kresge ◽  
Robert D. Simoni ◽  
Robert L. Hill

Sign in / Sign up

Export Citation Format

Share Document