Genetic differences in the interactions of a microsporidian parasite and four clones of its cyclically parthenogenetic host

Parasitology ◽  
1994 ◽  
Vol 108 (1) ◽  
pp. 11-16 ◽  
Author(s):  
D. Ebert

SUMMARYHost–parasite interactions were studied for the microsporidium Pleistophora intestinalis and its host, Daphnia magna. Two host clones were established from the same population from which the parasites were taken (home-1 and 2), and two clones from two other ponds (neighbour and Munich clone). With increasing clutch number infected females from home-1 clone produced relatively smaller clutches than uninfected females. Age and body length at maturity were not affected by the infection, but body length of the sixth adult instar was reduced. In an experiment including all four host clones, the parasite reproduced well in the two home clones and in the neighbour clone, but poorly in the Munich clone. Juvenile growth and age at maturity was not affected in the two home clones, but for the neighbour and the Munich clone age was delayed by 2·2 days and 4·1 days, and juvenile growth reduced by 16 and 23%, respectively. Significant host-clone x parasite-treatment interactions were also found for size at maturity and clutch size. This pattern of host-parasite interactions suggests that there is no general positive relation between disease severity and parasite multiplication rate.

PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0147549 ◽  
Author(s):  
Qiang Huang ◽  
Yan Ping Chen ◽  
Rui Wu Wang ◽  
Shang Cheng ◽  
Jay D. Evans

Parasitology ◽  
2014 ◽  
Vol 142 (2) ◽  
pp. 395-405 ◽  
Author(s):  
K. E. ROBERTS ◽  
W. O. H. HUGHES

SUMMARYTransmission is a key determinant of parasite fitness, and understanding the dynamics of transmission is fundamental to the ecology and evolution of host–parasite interactions. Successful transmission is often reliant on contact between infected individuals and susceptible hosts. The social insects consist of aggregated groups of genetically similar hosts, making them particularly vulnerable to parasite transmission. Here we investigate how the ratio of infected to susceptible individuals impacts parasite transmission, using the honey bee, Apis mellifera and its microsporidian parasite Nosema ceranae. We used 2 types of infected hosts found simultaneously in colonies; sterile female workers and sexual males. We found a higher ratio of infected to susceptible individuals in groups resulted in a greater proportion of susceptibles becoming infected, but this effect was non-linear and interestingly, the ratio also affected the spore production of infected individuals. The transmission level was much greater in an experiment where the infected individuals were drones than in an experiment where they were workers, suggesting drones may act as intracolonial ‘superspreaders’. Understanding the subtleties of transmission and how it is influenced by the phenotype of the infected/susceptible individuals is important for understanding pathogen transmission at population level, and for optimum targeting of parasite control strategies.


2019 ◽  
Author(s):  
Devon Keller ◽  
Devin Kirk ◽  
Pepijn Luijckx

AbstractDespite its pivotal role in evolutionary and ecological processes the genetic architecture underlying host-parasite interactions remains understudied. Here we use a quantitative trait loci approach to identify regions in the Daphnia magna genome that provide resistance against its microsporidium parasite Ordospora colligata. The probability that Daphnia became infected was affected by a single locus and an interaction between two additional loci. A fourth locus influenced the number of spores that grew within the host. Comparing our findings to previously published genetic work on Daphnia magna revealed that two of these loci may be the same as detected for another microsporidium parasite, suggesting a general immune response to this group of pathogens. More importantly, this comparison revealed that two regions previously identified to be under selection coincided with parasite resistance loci, highlighting the pivotal role parasites may play in shaping the host genome.


2011 ◽  
Vol 41 (9) ◽  
pp. 925-933 ◽  
Author(s):  
James A. Cotton ◽  
Jennifer K. Beatty ◽  
Andre G. Buret

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lenka Ulrychová ◽  
Pavel Ostašov ◽  
Marta Chanová ◽  
Michael Mareš ◽  
Martin Horn ◽  
...  

Abstract Background The blood flukes of genus Schistosoma are the causative agent of schistosomiasis, a parasitic disease that infects more than 200 million people worldwide. Proteases of schistosomes are involved in critical steps of host–parasite interactions and are promising therapeutic targets. We recently identified and characterized a group of S1 family Schistosoma mansoni serine proteases, including SmSP1 to SmSP5. Expression levels of some SmSPs in S. mansoni are low, and by standard genome sequencing technologies they are marginally detectable at the method threshold levels. Here, we report their spatial gene expression patterns in adult S. mansoni by the high-sensitivity localization assay. Methodology Highly sensitive fluorescence in situ RNA hybridization (FISH) was modified and used for the localization of mRNAs encoding individual SmSP proteases (including low-expressed SmSPs) in tissues of adult worms. High sensitivity was obtained due to specifically prepared tissue and probes in combination with the employment of a signal amplification approach. The assay method was validated by detecting the expression patterns of a set of relevant reference genes including SmCB1, SmPOP, SmTSP-2, and Sm29 with localization formerly determined by other techniques. Results FISH analysis revealed interesting expression patterns of SmSPs distributed in multiple tissues of S. mansoni adults. The expression patterns of individual SmSPs were distinct but in part overlapping and were consistent with existing transcriptome sequencing data. The exception were genes with significantly low expression, which were also localized in tissues where they had not previously been detected by RNA sequencing methods. In general, SmSPs were found in various tissues including reproductive organs, parenchymal cells, esophagus, and the tegumental surface. Conclusions The FISH-based assay provided spatial information about the expression of five SmSPs in adult S. mansoni females and males. This highly sensitive method allowed visualization of low-abundantly expressed genes that are below the detection limits of standard in situ hybridization or by RNA sequencing. Thus, this technical approach turned out to be suitable for sensitive localization studies and may also be applicable for other trematodes. The results suggest that SmSPs may play roles in diverse processes of the parasite. Certain SmSPs expressed at the surface may be involved in host–parasite interactions. Graphic abstract


2021 ◽  
Vol 10 (2) ◽  
pp. 205
Author(s):  
Lúcio Lara Santos ◽  
Júlio Santos ◽  
Maria João Gouveia ◽  
Carina Bernardo ◽  
Carlos Lopes ◽  
...  

Schistosomiasis is the most important helminthiasis worldwide in terms of morbidity and mortality. Most of the infections occurs in Africa, which about two thirds are caused by Schistosoma haematobium. The infection with S. haematobium is considered carcinogenic leading to squamous cell carcinoma (SCC) and urothelial carcinoma of the urinary bladder. Additionally, it is responsible for female genital schistosomiasis leading to infertility and higher risk of human immunodeficiency virus (HIV) transmission. Remarkably, a recent outbreak in Corsica (France) drew attention to its potential re-mergence in Southern Europe. Thus far, little is known related to host-parasite interactions that trigger carcinogenesis. However, recent studies have opened new avenues to understand mechanisms on how the parasite infection can lead cancer and other associated pathologies. Here, we present a historical perspective of schistosomiasis, and review the infection-associated pathologies and studies on host–parasite interactions that unveil tentative mechanisms underlying schistosomiasis-associated carcinogenesis.


2021 ◽  
Vol 37 (5) ◽  
pp. 445-455
Author(s):  
Rogini Runghen ◽  
Robert Poulin ◽  
Clara Monlleó-Borrull ◽  
Cristina Llopis-Belenguer

Sign in / Sign up

Export Citation Format

Share Document