Screening and synthesis: high throughput technologies applied to parasitology

Parasitology ◽  
2004 ◽  
Vol 128 (S1) ◽  
pp. S71-S79 ◽  
Author(s):  
R. E. MORGAN ◽  
N. J. WESTWOOD

High throughput technologies continue to develop in response to the challenges set by the genome projects. This article discusses how the techniques of both high throughput screening (HTS) and synthesis can influence research in parasitology. Examples of the use of targeted and phenotype-based HTS using unbiased compound collections are provided. The important issue of identifying the protein target(s) of bioactive compounds is discussed from the synthetic chemist's perspective. This article concludes by reviewing recent examples of successful target identification studies in parasitology.

2004 ◽  
Vol 9 (8) ◽  
pp. 704-711 ◽  
Author(s):  
Robert L. Yauch ◽  
Edward E. Kadel ◽  
Cory Nicholas ◽  
Selwyna Tetangco ◽  
Douglas O. Clary

With the sequence of the human genome at hand, target discovery strategies are needed that can rapidly identify novel gene products involved in human disease pathways. In this article, the authors describe a cell-based, high-throughput assay that can identify gene products capable of modulating the vascular endothelial growth factor (VEGF) and tumor necrosis factor • (TNFa) signaling pathways in human endothelial cells. The assay uses real-time PCRtechnology tomeasure downstreamreporter mRNA transcripts induced upon cytokine stimulation in a 96-well plate format and has been adapted for use with recombinant adenoviruses. The authors specifically demonstratemodulation of cytokine-driven reporter transcripts using drug inhibitors and through adenoviral-mediated expression of known signaling intermediates of the respective pathways. In addition, they have used an arrayed library of 350 recombinant adenoviruses to screen for novel modulators of the VEGF and TNF• pathways. The high-throughput screening capacity and sensitivity of this system make it a useful tool for new drug target identification.


2015 ◽  
Vol 20 (8) ◽  
pp. 932-942 ◽  
Author(s):  
Christin Luft ◽  
Robin Ketteler

The discovery of RNA interference (RNAi) has enabled several breakthrough discoveries in the area of functional genomics. The RNAi technology has emerged as one of the major tools for drug target identification and has been steadily improved to allow gene manipulation in cell lines, tissues, and whole organisms. One of the major hurdles for the use of RNAi in high-throughput screening has been delivery to cells and tissues. Some cell types are refractory to high-efficiency transfection with standard methods such as lipofection or calcium phosphate precipitation and require different means. Electroporation is a powerful and versatile method for delivery of RNA, DNA, peptides, and small molecules into cell lines and primary cells, as well as whole tissues and organisms. Of particular interest is the use of electroporation for delivery of small interfering RNA oligonucleotides and clustered regularly interspaced short palindromic repeats/Cas9 plasmid vectors in high-throughput screening and for therapeutic applications. Here, we will review the use of electroporation in high-throughput screening in cell lines and tissues.


2016 ◽  
Vol 90 (16) ◽  
pp. 7368-7387 ◽  
Author(s):  
Marco Weisshaar ◽  
Robert Cox ◽  
Zachary Morehouse ◽  
Shiva Kumar Kyasa ◽  
Dan Yan ◽  
...  

ABSTRACTInfluenza A virus (IAV) infections cause major morbidity and mortality, generating an urgent need for novel antiviral therapeutics. We recently established a dual myxovirus high-throughput screening protocol that combines a fully replication-competent IAV-WSN strain and a respiratory syncytial virus reporter strain for the simultaneous identification of IAV-specific, paramyxovirus-specific, and broad-spectrum inhibitors. In the present study, this protocol was applied to a screening campaign to assess a diverse chemical library with over 142,000 entries. Focusing on IAV-specific hits, we obtained a hit rate of 0.03% after cytotoxicity testing and counterscreening. Three chemically distinct hit classes with nanomolar potency and favorable cytotoxicity profiles were selected. Time-of-addition, minigenome, and viral entry studies demonstrated that these classes block hemagglutinin (HA)-mediated membrane fusion. Antiviral activity extends to an isolate from the 2009 pandemic and, in one case, another group 1 subtype. Target identification through biolayer interferometry confirmed binding of all hit compounds to HA. Resistance profiling revealed two distinct escape mechanisms: primary resistance, associated with reduced compound binding, and secondary resistance, associated with unaltered binding. Secondary resistance was mediated, unusually, through two different pairs of cooperative mutations, each combining a mutation eliminating the membrane-proximal stalk N-glycan with a membrane-distal change in HA1 or HA2. Chemical synthesis of an analog library combined within silicodocking extracted a docking pose for the hit classes. Chemical interrogation spotlights IAV HA as a major druggable target for small-molecule inhibition. Our study identifies novel chemical scaffolds with high developmental potential, outlines diverse routes of IAV escape from entry inhibition, and establishes a path toward structure-aided lead development.IMPORTANCEThis study is one of the first to apply a fully replication-competent third-generation IAV reporter strain to a large-scale high-throughput screen (HTS) drug discovery campaign, allowing multicycle infection and screening in physiologically relevant human respiratory cells. A large number of potential druggable targets was thus chemically interrogated, but mechanistic characterization, positive target identification, and resistance profiling demonstrated that three chemically promising and structurally distinct hit classes selected for further analysis all block HA-mediated membrane fusion. Viral escape from inhibition could be achieved through primary and secondary resistance mechanisms.In silicodocking predicted compound binding to a microdomain located at the membrane-distal site of the prefusion HA stalk that was also previously suggested as a target site for chemically unrelated HA inhibitors. This study identifies an unexpected chemodominance of the HA stalk microdomain for small-molecule inhibitors in IAV inhibitor screening campaigns and highlights a novel mechanism of cooperative resistance to IAV entry blockers.


2001 ◽  
Vol 6 (3) ◽  
pp. 133-136 ◽  
Author(s):  
Len Pagliaro ◽  
Morten Præstegaard

During 1999, Journal of Biomolecular Screening presented a series of Point-Counterpoint articles that addressed a question posed by editor Bill Janzen: "What is the future of HTS?" These articles discussed many of the global issues involved in HTS, such as target identification and library size, as well as the scientific and technical challenges facing the field. In this perspective we address a related, but very focused, issue that is increasingly important for many of us in the HTS community: the use of stably transfected cell lines as an integral part of screening strategies. Transfected cell lines provide powerful tools for assay design, but at the same time they introduce complex variables into the screening system. Although it is difficult to develop precise definitions and standards for biologicals such as cell lines, we propose that the development of guidelines for the nomenclature and use of transfected cell lines is essential for their use in HTS.


Author(s):  
Kamal Azzaoui ◽  
John P. Priestle ◽  
Thibault Varin ◽  
Ansgar Schuffenhauer ◽  
Jeremy L. Jenkins ◽  
...  

2021 ◽  
Vol 22 (14) ◽  
pp. 7489
Author(s):  
Pierre Darme ◽  
Manuel Dauchez ◽  
Arnaud Renard ◽  
Laurence Voutquenne-Nazabadioko ◽  
Dominique Aubert ◽  
...  

Molecular docking is widely used in computed drug discovery and biological target identification, but getting fast results can be tedious and often requires supercomputing solutions. AMIDE stands for AutoMated Inverse Docking Engine. It was initially developed in 2014 to perform inverse docking on High Performance Computing. AMIDE version 2 brings substantial speed-up improvement by using AutoDock-GPU and by pulling a total revision of programming workflow, leading to better performances, easier use, bug corrections, parallelization improvements and PC/HPC compatibility. In addition to inverse docking, AMIDE is now an optimized tool capable of high throughput inverse screening. For instance, AMIDE version 2 allows acceleration of the docking up to 12.4 times for 100 runs of AutoDock compared to version 1, without significant changes in docking poses. The reverse docking of a ligand on 87 proteins takes only 23 min on 1 GPU (Graphics Processing Unit), while version 1 required 300 cores to reach the same execution time. Moreover, we have shown an exponential acceleration of the computation time as a function of the number of GPUs used, allowing a significant reduction of the duration of the inverse docking process on large datasets.


Sign in / Sign up

Export Citation Format

Share Document