reporter strain
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 14)

H-INDEX

22
(FIVE YEARS 1)

AMB Express ◽  
2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Josué Daniel Mora-Garduño ◽  
Jessica Tamayo-Nuñez ◽  
Felipe Padilla-Vaca ◽  
Fátima Berenice Ramírez-Montiel ◽  
Ángeles Rangel-Serrano ◽  
...  

AbstractThe presence of pollutants in soil and water has given rise to diverse analytical and biological approaches to detect and measure contaminants in the environment. Using bacterial cells as reporter strains represents an advantage for detecting pollutants present in soil or water samples. Here, an Escherichia coli reporter strain expressing a chromoprotein capable of interacting with soil or water samples and responding to DNA damaging compounds is validated. The reporter strain generates a qualitative signal and is based on the expression of the coral chromoprotein AmilCP under the control of the recA promoter. This strain can be used simply by applying soil or water samples directly and rendering activation upon DNA damage. This reporter strain responds to agents that damage DNA (with an apparent detection limit of 1 µg of mitomycin C) without observable response to membrane integrity damage, protein folding or oxidative stress generating agents, in the latter case, DNA damage was observed. The developed reporter strain reported here is effective for the detection of DNA damaging agents present in soils samples. In a proof-of-concept analysis using soil containing chromium, showing activation at 15.56 mg/L of Cr(VI) present in soil and leached samples and is consistent with Cr(III) toxicity at high concentrations (130 µg). Our findings suggest that chromogenic reporter strains can be applied for simple screening, thus reducing the number of samples requiring analytical techniques.


2021 ◽  
Vol 12 ◽  
Author(s):  
Patrick J. Bakkes ◽  
Patrick Lenz ◽  
Carolin Müller ◽  
Astrid Bida ◽  
Doris Dohmen-Olma ◽  
...  

The industrial microbe Corynebacterium glutamicum is gaining substantial importance as a platform host for recombinant protein secretion. We recently developed a fluorescence-based (eYFP) C. glutamicum reporter strain for the quantification of Sec-dependent protein secretion by monitoring the secretion-related stress response and now demonstrate its applicability in optimizing the secretion of the heterologous enzyme cutinase from Fusarium solani pisi. To drive secretion, either the poor-performing PelSP or the potent NprESP Sec signal peptide from Bacillus subtilis was used. To enable easy detection and quantification of the secreted cutinase we implemented the split green fluorescent protein (GFP) assay, which relies on the GFP11-tag fused to the C-terminus of the cutinase, which can complement a truncated GFP thereby reconstituting its fluorescence. The reporter strain was transformed with different mutant libraries created by error-prone PCR, which covered the region of the signal peptide and the N-terminus of the cutinase. Fluorescence-activated cell sorting (FACS) was performed to isolate cells that show increased fluorescence in response to increased protein secretion stress. Five PelSP variants were identified that showed a 4- to 6-fold increase in the amount and activity of the secreted cutinase (up to 4,100 U/L), whereas two improved NprESP variants were identified that showed a ∼35% increase in secretion, achieving ∼5,500 U/L. Most of the isolated variants carried mutations in the h-region of the signal peptide that increased its overall hydrophobicity. Using site-directed mutagenesis it was shown that the combined mutations F11I and P16S within the hydrophobic core of the PelSP are sufficient to boost cutinase secretion in batch cultivations to the same level as achieved by the NprESP. Screening of a PelSP mutant library in addition resulted in the identification of a cutinase variant with an increased specific activity, which was attributed to the mutation A85V located within the substrate-binding region. Taken together the biosensor-based optimization approach resulted in a substantial improvement of cutinase secretion by C. glutamicum, and therefore represents a valuable tool that can be applied to any secretory protein of interest.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1307
Author(s):  
Enzo Joaquin Torasso Kasem ◽  
Angel Angelov ◽  
Elisa Werner ◽  
Antoni Lichev ◽  
Sonja Vanderhaeghen ◽  
...  

Historically, Micrococcus luteus was one of the first organisms used to study natural transformation, one of the main routes of horizontal gene transfer among prokaryotes. However, little is known about the molecular basis of competence development in M. luteus or any other representative of the phylum of high-GC Gram-positive bacteria (Actinobacteria), while this means of genetic exchange has been studied in great detail in Gram-negative and low-GC Gram-positive bacteria (Firmicutes). In order to identify new genetic elements involved in regulation of the comEA-comEC competence operon in M. luteus, we conducted random chemical mutagenesis of a reporter strain expressing lacZ under the control of the comEA-comEC promoter, followed by the screening of dysregulated mutants. Mutants with (i) upregulated com promoter under competence-repressing conditions and (ii) mutants with a repressed com promoter under competence-inducing conditions were isolated. After genotype and phenotype screening, the genomes of several mutant strains were sequenced. A selection of putative com-influencing mutations was reinserted into the genome of the M. luteus reporter strain as markerless single-nucleotide mutations to confirm their effect on com gene expression. This strategy revealed mutations affecting com gene expression at genetic loci different from previously known genes involved in natural transformation. Several of these mutations decreased transformation frequencies by several orders of magnitude, thus indicating significant roles in competence development or DNA acquisition in M. luteus. Among the identified loci, there was a new locus containing genes with similarity to genes of the tad clusters of M. luteus and other bacteria.


Author(s):  
Roland S. Kun ◽  
Sandra Garrigues ◽  
Marcos Di Falco ◽  
Adrian Tsang ◽  
Ronald P. de Vries

Abstract Aspergillus niger is a filamentous fungus well known for its ability to produce a wide variety of pectinolytic enzymes, which have many applications in the industry. The transcriptional activator GaaR is induced by 2-keto-3-deoxy-L-galactonate, a compound derived from D-galacturonic acid, and plays a major role in the regulation of pectinolytic genes. The requirement for inducer molecules can be a limiting factor for the production of enzymes. Therefore, the generation of chimeric transcription factors able to activate the expression of pectinolytic genes by using underutilized agricultural residues would be highly valuable for industrial applications. In this study, we used the CRISPR/Cas9 system to generate three chimeric GaaR-XlnR transcription factors expressed by the xlnR promoter by swapping the N-terminal region of the xylanolytic regulator XlnR to that of the GaaR in A. niger. As a test case, we constructed a PpgaX-hph reporter strain to evaluate the alteration of transcription factor specificity in the chimeric mutants. Our results showed that the chimeric GaaR-XlnR transcription factor was induced in the presence of D-xylose. Additionally, we generated a constitutively active GaaR-XlnR V756F version of the most efficient chimeric transcription factor to better assess its activity. Proteomics analysis confirmed the production of several pectinolytic enzymes by ΔgaaR mutants carrying the chimeric transcription factor. This correlates with the improved release of D-galacturonic acid from pectin by the GaaR-XlnR V756F mutant, as well as by the increased L-arabinose release from the pectin side chains by both chimeric mutants under inducing condition, which is required for efficient degradation of pectin. Key points • Chimeric transcription factors were generated by on-site mutations using CRISPR/Cas9. • PpgaX-hph reporter strain allowed for the screening of functional GaaR-XlnR mutants. • Chimeric GaaR-XlnR induced pectinolytic activities in the presence of D-xylose.


2021 ◽  
Vol 22 (13) ◽  
pp. 6930
Author(s):  
Cauê Benito Scarim ◽  
Francisco Olmo ◽  
Elizabeth Igne Ferreira ◽  
Chung Man Chin ◽  
John M. Kelly ◽  
...  

Hydroxymethylnitrofurazone (NFOH) is a therapeutic candidate for Chagas disease (CD). It has negligible hepatotoxicity in a murine model compared to the front-line drug benznidazole (BZN). Here, using Trypanosoma cruzi strains that express bioluminescent and/or fluorescent reporter proteins, we further investigated the in vitro and in vivo activity of NFOH to define whether the compound is trypanocidal or trypanostatic. The in vitro activity was assessed by exploiting the fluorescent reporter strain using wash-out assays and real-time microscopy. For animal experimentation, BALB/c mice were inoculated with the bioluminescent reporter strain and assessed by highly sensitive in vivo and ex vivo imaging. Cyclophosphamide treatment was used to promote parasite relapse in the chronic stage of infection. Our data show that NFOH acts by a trypanostatic mechanism, and that it is more active than BZN in vitro against the infectious trypomastigote form of Trypanosoma cruzi. We also found that it is more effective at curing experimental infections in the chronic stage, compared with the acute stage, a feature that it shares with BZN. Therefore, given its reduced toxicity, enhanced anti-trypomastigote activity, and curative properties, NFOH can be considered as a potential therapeutic option for Chagas disease, perhaps in combination with other trypanocidal agents.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0247895
Author(s):  
Müge Özkan ◽  
Yusuf Cem Eskiocak ◽  
Gerhard Wingender

The clear and unequivocal identification of immune effector functions is essential to understand immune responses. The cytokine IL-10 is a critical immune regulator and was shown, for example, to limit pathology during various lung diseases. However, the clear identification of IL-10-producing cells is challenging and, therefore, reporter mouse lines were developed to facilitate their detection. Several such reporter lines utilize GFP, including the IL-10GFP (VeRT-X) reporter strain studied here. In line with previous reports, we found that this IL-10GFP line faithfully reports on the IL-10 production of lymphoid cells. However, we show that the IL-10GFP reporter is not suitable to analyse IL-10 production of myeloid cells during inflammation. During inflammation, the autofluorescence of myeloid cells increased to an extent that entirely masked the IL-10-specific GFP-signal. Our data illustrate a general and important technical caveat using GFP-reporter lines for the analysis of myeloid cells and suggest that previous reports on effector functions of myeloid cells using such GFP-based reporters might require re-evaluation.


2021 ◽  
Author(s):  
Müge Özkan ◽  
Yusuf Cem Eskiocak ◽  
Gerhard Wingender

AbstractThe clear and unequivocal identification of immune effector functions is essential to understand immune responses. The cytokine IL-10 is a critical immune regulator and was shown, for example, to limit pathology during various lung diseases. However, the clear identification of IL-10-producing cells is challenging and, therefore, reporter mouse lines were developed to facilitate their detection. Several such reporter lines utilize GFP, including the IL-10GFP (VeRT-X) reporter strain studied here. In line with previous reports, we found that this IL-10GFP line faithfully reports on the IL-10 production of lymphoid cells. However, we show that the IL-10GFP reporter is not suitable to analyse IL-10 production of myeloid cells during inflammations. During inflammation, the autofluorescence of myeloid cells increased to an extent that entirely masked the IL-10-specific GFP-signal. Our data illustrate a general and important technical caveat using GFP-reporter lines for the analysis of myeloid cells and suggest that previous reports on effector functions of myeloid cells using such GFP-based reporters might require re-evaluation.


2020 ◽  
Vol 21 (24) ◽  
pp. 9448
Author(s):  
Agathe Peyrottes ◽  
Garance Coquant ◽  
Loïc Brot ◽  
Dominique Rainteau ◽  
Philippe Seksik ◽  
...  

Background: Since acyl-homoserine lactone (AHL) profiling has been described in the gut of healthy subjects and patients with inflammatory bowel disease (IBD), the potential effects of these molecules on host cells have raised interest in the medical community. In particular, natural AHLs such as the 3-oxo-C12-HSL exhibit anti-inflammatory properties. Our study aimed at finding stable 3-oxo-C12-HSL-derived analogues with improved anti-inflammatory effects on epithelial and immune cells. Methods: We first studied the stability and biological properties of the natural 3-oxo-C12-HSL on eukaryotic cells and a bacterial reporter strain. We then constructed and screened a library of 22 AHL-derived molecules. Anti-inflammatory effects were assessed by cytokine release in an epithelial cell model, Caco-2, and a murine macrophage cell line, RAW264.7, (respectively, IL-8 and IL-6) upon exposure to the molecule and after appropriate stimulation (respectively, TNF-α 50 ng/mL and IFN-γ 50 ng/mL, and LPS 10 ng/mL and IFN-γ 20 U/mL). Results: We found two molecules of interest with amplified anti-inflammatory effects on mammalian cells without bacterial-activating properties in the reporter strain. The molecules furthermore showed improved stability in biological medium compared to the native 3-oxo-C12-HSL. Conclusions: We provide new bio-inspired AHL analogues with strong anti-inflammatory properties that will need further study from a therapeutic perspective.


Author(s):  
Thomas J. Gniadek ◽  
Joshua M. Thiede ◽  
William E. Matchett ◽  
Abigail R. Gress ◽  
Kathryn A. Pape ◽  
...  

AbstractWe determined the antigen binding activity of convalescent plasma units from 47 individuals with a history of non-severe COVID-19 using three clinical diagnostic serology assays (Beckman, DiaSorin, and Roche) with different SARS-CoV-2 targets. We compared these results with functional neutralization activity using a fluorescent reporter strain of SARS-CoV-2 in a microwell assay. This revealed positive correlations of varying strength (Spearman r = 0.37-0.52) between binding and neutralization. Donors age 48-75 had the highest neutralization activity. Units in the highest tertile of binding activity for each assay were enriched (75-82%) for those with the highest levels of neutralization.


Sign in / Sign up

Export Citation Format

Share Document