scholarly journals Extraction and AMS Radiocarbon Dating of Pollen from Lake Baikal Sediments

Radiocarbon ◽  
2004 ◽  
Vol 46 (1) ◽  
pp. 181-187 ◽  
Author(s):  
Natalia Piotrowska ◽  
Andrzej Bluszcz ◽  
Dieter Demske ◽  
Wojciech Granoszewski ◽  
Georg Heumann

This work focuses on the preparation and dating of sporomorph (pollen and spores) concentrates of high purity. Three sediment cores recovered from Lake Baikal within the EU-Project CONTINENT were subjected to palynological analyses and accelerator mass spectrometry (AMS) radiocarbon dating. Laboratory processing of concentrates was aimed at the removal of non-sporomorph organic matter by means of chemical treatment, micro-sieving, and heavy liquid separation. The obtained concentrates were checked under the microscope and sample purity was estimated on the basis of particle counts. The results of AMS 14C dating show differences in the sedimentation rate among 3 sites of Lake Baikal.


Radiocarbon ◽  
2010 ◽  
Vol 52 (2) ◽  
pp. 408-414 ◽  
Author(s):  
L Calcagnile ◽  
V Tinè ◽  
G Quarta ◽  
M D'Elia ◽  
G Fiorentino ◽  
...  

The Santuario della Madonna Cave, located near Praia a Mare (Cosenza), along the northwestern coast of Calabria (southern Italy), has an impressive stratigraphy, with occupation phases spanning from the late Paleolithic to the advanced phases of the Middle Bronze Age. Recently, a new excavation area has been opened in the cave from which shortlived vegetal remains were sampled and submitted for accelerator mass spectrometry (AMS) radiocarbon dating. The aim of this study was to define an accurate chronology of the different cultural aspects and to explore the potentialities resulting from application of advanced statistical tools for 14C data analysis in such a context.



Radiocarbon ◽  
2010 ◽  
Vol 52 (3) ◽  
pp. 933-940 ◽  
Author(s):  
Shinya Yatsuzuka ◽  
Mitsuru Okuno ◽  
Toshio Nakamura ◽  
Katsuhiko Kimura ◽  
Yohei Setoma ◽  
...  

We performed accelerator mass spectrometry (AMS) radiocarbon dating and wiggle-matching of 2 wood samples from charred trunks of trees (samples A and B) collected from an ignimbrite deposit on the northeastern slope of the Baitoushan Volcano on the border of China and North Korea. The obtained calendar years for the eruption are cal AD 945–960 for sample A and cal AD 859–884 and cal AD 935–963 for sample B in the 2-σ range. These results are unable to determine the precise eruption age. The reason for the difference in reported ages may be due to volcanic gas emission prior to the huge eruption.



Radiocarbon ◽  
2001 ◽  
Vol 43 (2B) ◽  
pp. 1109-1114 ◽  
Author(s):  
Zhiyu Guo ◽  
Kexin Liu ◽  
Xiangyang Lu ◽  
Hongji Ma ◽  
Kun Li ◽  
...  

Tianma-Qucun is the biggest site of Western Zhou Dynasty discovered in Shanxi Province, China. It has been recognized as the early capital of Jin, a vassal state of Western Zhou. The territories were granted to the first Marquis of Jin with the title in the early days of Western Zhou. Bone sample series from the site were radiocarbon-dated by accelerator mass spectrometry (AMS) and calibrated with the Oxford calibration program OxCal 3.5. Bayesian analysis of the calibrated ages shows that the earliest residents of the Western Zhou came to Tianma-Qucun area in 1020–940 BC and the lower boundary of the Western Zhou is 796–754 BC, which corresponds well to the historical record 770 BC.



Radiocarbon ◽  
1999 ◽  
Vol 41 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Scott A Mensing ◽  
John R Southon

We present a simple method for manually separating pollen concentrates for radiocarbon accelerator mass spectrometry (AMS) dating using a mouth pipetting system. The required equipment is readily available from scientific equipment supply houses at minimal cost. Pollen samples from lake sediments required about 4 h of hand picking, whereas samples from marine sediments required about 8 h labor. Pollen dates from marine sediments were much older than expected. We are attempting to resolve whether this is due to contamination of the pollen or the presence of significant quantities of old reworked pollen. Pollen dates from lake sediments associated with Mazama Ash were consistent with other published ages; however, replicate dates on pollen samples from above the ash were consistently older than the surrounding sediment. Our results suggest that caution must be used when interpreting pollen dates if the potential for sediment reworking is present.



Radiocarbon ◽  
2008 ◽  
Vol 50 (3) ◽  
pp. 437-445 ◽  
Author(s):  
E Uchida ◽  
O Cunin ◽  
I Shimoda ◽  
Y Takubo ◽  
T Nakagawa

In the Angkor monuments of Cambodia, pieces of wood remain (as head frames of doorways, crossbeams, ceiling boards, etc.) in the following 8 monuments: Bakong, Lolei, Baksei Chamkrong, North Khleang, Angkor Wat, Banteay Kdei, Bayon, and Gates of Angkor Thorn. Accelerator mass spectrometry (AMS) radiocarbon dating carried out on 15 wood samples collected from the above 8 monuments revealed that most of the wood samples are original, except for the head frame of a doorway in Baksei Chamkrong, the ceiling boards in the northwest tower, and a crossbeam with pivot hole in the southwest tower of the Inner Gallery of Angkor Wat. The 14C age for the head frame of a doorway in the inner wall under the central tower of North Khleang supports the hypothesis that the inner walls are additions from a later period.



Radiocarbon ◽  
2007 ◽  
Vol 49 (2) ◽  
pp. 217-224 ◽  
Author(s):  
L Rinyu ◽  
I Futó ◽  
Á Z Kiss ◽  
M Molnár ◽  
É Svingor ◽  
...  

We present our new graphite target production system, developed in the Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), for accelerator mass spectrometry (AMS) radiocarbon dating measurements. The system consists of a gas handling line and a graphite target production system. Results of AMS measurements, stable isotope mass spectrometry measurements, and gravimetric/pressure yield determinations have been used to find the proper conditions for the graphitization process. We have also investigated the 14C contamination and the memory effect of the system during the graphitization processes. This paper covers the details of these experiments and a discussion of the results.



Radiocarbon ◽  
2005 ◽  
Vol 47 (2) ◽  
pp. 207-210 ◽  
Author(s):  
G Quarta ◽  
M D'Elia ◽  
E Ingravallo ◽  
I Tiberi ◽  
L Calcagnile

Bone and charcoal samples from the Neolithic site of Serra Cicora in the Salento Peninsula (southern Italy) have been dated by accelerator mass spectrometry (AMS). Measurements appear to support other archaeological evidence and have shown that 2 distinct phases of human occupation of the site can be identified: the first occupation in the Early Neolithic and a second occupation in the Middle-Late Neolithic. The results provide new information and are a fundamental contribution to the definition of the absolute chronology of the Middle-Late Neolithic in this part of Europe.



2020 ◽  
Author(s):  
Christoph Steinhoff ◽  
Nadine Pickarski ◽  
Thomas Litt

<p>Radiocarbon dating of terrestrial plant-remains is a traditional method for precise age estimations of lake sediments. The absence of sufficient large plant macrofossils required for AMS dating in continental records, especially large lakes, demands for a satisfactory alternative, such as carbon-containing microfossils. Due to their ubiquitous presence in sedimentary archives pollen grains may be considered for dating. Nevertheless, the isolation and enrichment of pollen without a significant carbon contamination is still challenging. Even though commonly applied separation techniques can be used to remove the predominant portions of foreign particles, the undesirable transfer of these particles into the pollen concentrate cannot be excluded, yet. However, flow cytometry, as a highly promising alternative, offers the possibility to sort huge quantities of particles in a short period of time and to generate pure pollen concentrates from heterogeneous samples suitable for AMS radiocarbon dating.</p><p>In this study we present the approach to sort limnic sediment samples using flow cytometry. We are able to unequivocally identify pollen populations in the heterogeneous composition of the sediments and isolate them. The sediments analyzed were taken from the continental record of Lake Van (Eastern Anatolia). Annually laminated layers from the Holocene section of the sediment cores allow a precise temporal classification and validation of generated radiocarbon ages derived from fossil pollen. Although it is now possible to produce pollen concentrates without the contamination of foreign particles, the isolation of a sufficient quantity of pollen grains to generate reliable radiocarbon ages is still difficult. An increase pollen yield is required. Due to the limitation of the initial material, it is therefore especially necessary to improve the efficiency during the cytometric analysis.</p><p>Our results show the importance to steadily optimize the processing steps during chemical pretreatment, cytometric analysis as well as the radiocarbon dating itself. This facilitates the handling of the ultra-small samples and ensures precise age estimations of the pollen concentrates. Furthermore improving the laboratory routine for the enrichment of pollen will allow the analysis of vast amounts of samples in a short period of time. In consequence, dating pollen concentrates generated by flow cytometry can be used as a robust contribution and independent time control for existing chronologies in continental climate records.</p>



Radiocarbon ◽  
2013 ◽  
Vol 55 (2) ◽  
pp. 593-598
Author(s):  
J H Park ◽  
W Hong ◽  
G Park ◽  
K S Sung

Various carbon structures, including carbon nanofilament (CNF), single-wall carbon nanotube (SWCNT), multi-wall carbon nanotube (MWCNT), and pyrolytic graphite sheet (PGS), were exposed in air to determine how they vary according to carbon structure and air temperature. CNF is the carbon structure used in accelerator mass spectrometry (AMS) radiocarbon dating (Santos et al. 2007). When CNF and MWCNT were exposed in cold air (3 or −18 °C) for longer than 6 hr, their 14C/12C ratio increased (>5 × 10–14). When heated in an oven (200 or 250 °C) for longer than 12 hr, their 14C/12C ratio decreased. However, when SWCNT and PGS were exposed in air cooled to 3 °C for 12 hr, their 14C/12C ratio did not increase. This phenomenon is very curious, and is useful for the development of a storage method for carbon samples made by reduction reactions of CO2.



Radiocarbon ◽  
1994 ◽  
Vol 36 (3) ◽  
pp. 399-405 ◽  
Author(s):  
Lee-Ann Bradley ◽  
Thomas W. Stafford

A new automated pretreatment system for the preparation of materials submitted for accelerator mass spectrometry (AMS) analysis is less time-consuming and results in a higher sample yield. The new procedure was tested using two groups of plant fossils: one group was pretreated using the traditional method, and the second, using the automated pretreatment apparatus. We compared the time it took to complete the procedure and the amount of sample material remaining. The automated pretreatment apparatus proved to be more than three times faster and, in most cases, produced a higher yield. We also observed a darker discoloration of the KOH solutions, indicating that the automated system is more thorough in removing humates from the specimen compared to the manual method.



Sign in / Sign up

Export Citation Format

Share Document