Basis for Selectivity of Phenmedipham and Desmedipham on Wild Mustard, Redroot Pigweed, and Sugar Beet

Weed Science ◽  
1974 ◽  
Vol 22 (2) ◽  
pp. 179-184 ◽  
Author(s):  
Larry W. Hendrick ◽  
William F. Meggitt ◽  
Donald Penner

The basis for selectivity of phenmedipham (methyl-m-hydroxycarbanilatem-methylcarbanilate) and desmedipham (ethylm-hydroxycarbanilate carbanilate) on wild mustard [Brassica kaber(DC.) L.C. Wheeler ‘pinnatifida’ (Stokes) L.C. Wheeler], redroot pigweed (Amaranthus retroflexusL.), and sugar beet (Beta vulgarisL.) was studied by evaluating spray retention, absorption, translocation, and metabolism. Total photosynthesis in wild mustard was severely inhibited in less than 5 hr after foliar application of either herbicide and did not recover. Total photosynthesis in sugar beet was slightly inhibited but recovered after 24 hr. Photosynthesis in redroot pigweed recovered from a treatment of phenmedipham but did not recover when treated with desmedipham. Differences in spray retention or foliar absorption did not explain selectivity. Within 5 hr after herbicide application, redroot pigweed had translocated more desmedipham than phenmedipham from the site of absorption and had metabolized a large amount of the phenmedipham but little desmedipham. The key factor explaining selectivity appeared to be at the initial detoxication reaction of the parent compound.

Weed Science ◽  
1985 ◽  
Vol 33 (3) ◽  
pp. 391-394 ◽  
Author(s):  
Monte D. Anderson ◽  
W. Eugene Arnold

The effect of rainfall on the performance of a tank mixture of desmedipham [ethylm-hydroxycarbanilate carbanilate(ester)] and phenmedipham (methylm-hydroxycarbanilatem-methylcarbanilate) applied postemergence to redroot pigweed (Amaranthus retroflexusL. ♯ AMARE), wild mustard (Sinapsis arvensisL. ♯ SINAR) and sunflower (Helianthus annuusL.) was evaluated in field studies. The occurrence of 1 mm of rain immediately after herbicide application significantly decreased the control of redroot pigweed and wild mustard. A rainfall quantity of 1 mm also reduced injury symptoms on sunflower. Simulating a 12.7-mm rain less than 18 h after desmedipham and phenmedipham application effectively reduced toxicity to redroot pigweed and sunflower. Toxicity to these two species increased at a lesser rate than for wild mustard as the time interval prior to rain was increased. A rain-free period of 6 h was predicted for near-maximum control of wild mustard with these herbicides.


Weed Science ◽  
1973 ◽  
Vol 21 (1) ◽  
pp. 67-70 ◽  
Author(s):  
Stephen D. Miller ◽  
John D. Nalewaja

Weed control and sugarbeet (Beta vulgarisL.) injury from applications of methylm-hydroxycarbanilatem-methyl-carbanilate (phenmedipham) were influenced by additives, volume of additive, and species in both field and greenhouse experiments. Oils were more effective than the surfactant as additives to phenmedipham on green foxtail (Setaria virdis(L.) Beauv.), yellow foxtail (Setaria glauca(L.) Beauv.), redroot pigweed (Amaranthus retroflexusL.), or common lambsquarters (Chenopodium albumL.). Herbicidal activity of phenmedipham on kochia (Kochia scoparia(L.) Schrad.) or wild mustard (Brassica kaber(D.C.) L.C. Wheeler var.pinnatifida(Stokes) L.C. Wheeler) was not enhanced by any additive. Linseed oil (2.34 L/ha) enhanced the herbicidal activity of phenmedipham on green foxtail, yellow foxtail, and redroot pigweed more than petroleum (2.34 L/ha) or sunflower (Helianthus annusL.) oil (2.34 or 9.35 L/ha). However, linseed oil reduced the herbicidal activity of phenmedipham on kochia.


Weed Science ◽  
1981 ◽  
Vol 29 (3) ◽  
pp. 349-355 ◽  
Author(s):  
Richard Behrens ◽  
M. A. Elakkad

To study rainfall effects, simulated rainfall was applied to velvetleaf (Abutilon theophrastiMedic.), common lambsquarters (Chenopodium albumL.), wild mustard [Brassica kaber(DC.) L. C. Wheeler var.pinnatifida(Stokes) L. C. Wheeler], soybean [Glycine max(L.) Merr. ‘Hodgson’], and redroot pigweed (Amaranthus retroflexusL.) in greenhouse and field studies following foliar applications of the alkanolamine (AKA) salt or the butoxyethanol (BE) ester of 2,4-D [(2,4-dichlorophenoxy)acetic acid] at rates that induced equivalent levels of phytotoxicity. Simulated rainfall less than 1 min after herbicide treatment reduced the phytotoxicity of the AKA salt of 2,4-D to a much greater extent than that of the BE ester with effects ranging from elimination of all injury from the AKA salt to soybeans to no reduction in phytotoxicity of the BE ester to common lambsquarters. The quantity of simulated rainfall required to induce maximum reductions in phytotoxicity of the BE ester ranged from 1 mm on common lambsquarters to 15 mm on velvetleaf. The time interval from 2,4-D treatment until rainfall required to achieve a phytotoxic response level of 80% of that attained without rainfall varied greatly among plant species and herbicide formulations; ranging from less than 1 min for the BE ester on common lambsquarters to more than 24 h for the AKA salt on velvetleaf. The addition of an alkylarylpolyoxyethylene glycol surfactant to 2,4-D spray solutions reduced herbicide rates required to induce equivalent levels of phytotoxicity, increased losses in phytotoxicity of the BE ester caused by rainfall, and reduced the time interval from treatment to rainfall required to attain an equivalent level of phytotoxicity with the AKA salt.


Weed Science ◽  
1986 ◽  
Vol 34 (1) ◽  
pp. 101-105 ◽  
Author(s):  
John D. Nalewaja ◽  
Grzegorz Skrzypczak

Experiments in controlled-environment chambers indicated that high temperature, 30 C, increased the phytotoxicity of bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) to wild mustard (Sinapis arvensisL. # SINAR) and redroot pigweed (Amaranthus retroflexusL. # AMARE) compared to low temperature, 10 C, during and after treatment. Bromoxynil phytotoxicity generally was higher at relative humidities of 90 to 95% compared to 40 to 60%, but relative humidity had less influence on bromoxynil phytotoxicity than did temperature. A simulated rain immediately after bromoxynil treatment reduced control of both species, but the reduction was of no practical importance for wild mustard. The data indicate that wild mustard and redroot pigweed control would be reduced by bromoxynil application during a period of low temperatures or to plants in advanced growth stages.


Weed Science ◽  
1981 ◽  
Vol 29 (6) ◽  
pp. 648-654 ◽  
Author(s):  
David N. Duncan ◽  
William F. Meggitt ◽  
Donald Penner

Absorption, translocation, and metabolism of foliar-applied ethofumesate [(±)-2-ethoxy-2,3-dihydro-3,3-dimethyl-5-benzofuranyl methanesulphonate] were studied to explain field observations showing differences in susceptibility among sugarbeet (Beta vulgarisL.), common ragweed (Ambrosia artemisiifoliaL.), redroot pigweed (Amaranthus retroflexusL.), and common lambsquarters (Chenopodium albumL.). In laboratory studies, two- to four-leaf seedlings of the highly susceptible species, redroot pigweed and common lambsquarter, absorbed greater amounts of14C-ethofumesate from foliar application than the moderately susceptible common ragweed and tolerant sugarbeet. Sugarbeet translocated very little14C from treated foliage to untreated plant tissue. All weed species translocated14C-ethofumesate to untreated leaf tissue when14C-ethofumesate was applied to seedlings at the two-leaf stage. Ethofumesate was translocated basipetally to the stem and root of two-leaf redroot pigweed and common lambsquarter seedlings. A high percentage of the14C was found in the water-soluble fraction in sugarbeet seedlings, indicating inactivation. The amount of metabolites recovered in the non-polar fraction depended on the stage of plant growth. Total photosynthesis and respiration in redroot pigweed was inhibited 4 h after foliar application and did not recover after 96 h. Uptake and evolution of CO2were also inhibited in sugarbeet leaves, but they recovered rapidly, depending on age of plant at treatment. The stage of plant development was the key factor determining species response to foliar treatments of ethofumesate in terms of absorption, metabolism, and total photosynthesis and respiration.


Weed Science ◽  
1984 ◽  
Vol 32 (3) ◽  
pp. 310-314 ◽  
Author(s):  
Monte D. Anderson ◽  
W. Eugene Arnold

Desmedipham [ethylm-hydroxycarbanilate carbanilate(ester)] controlled wild mustard (Sinapsis arvensisL. ♯3SINAR) and redroot pigweed (Amaranthus retroflexusL. ♯ AMARE) more effectively than phenmedipham (methylm-hydroxycarbanilatem-methylcarbanilate). A synergistic interaction occurred with all tank-mix combinations of the two herbicides for wild mustard control, except combinations containing 0.71 kg ai/ha of desmedipham. The magnitude of the synergism decreased as the rate of desmedipham was increased and increased as the rate of phenmedipham increased. Both herbicides caused injury symptoms of leaf necrosis and height reduction to sunflowers (Helianthus annuusL.). Crop injury and sunflower heights were affected more by desmedipham than by phenmedipham. Injury effects were temporary and had no influence on sunflower yields.


2001 ◽  
Vol 81 (4) ◽  
pp. 881-884 ◽  
Author(s):  
P. D. Ominski ◽  
M. H. Entz

The influence of method (tillage vs. no-till) and time of year of alfalfa (Medicago sativa L.) termination on the population of naturally occurring weeds was assessed over three site-years in southern Manitoba. Termination method was found to be more important than timing. Populations of weeds such as green foxtail [Setaria viridis (L.) Beauv.], redroot pigweed (Amaranthus retroflexus L.), wild mustard [Brassica kaber (DC) L.C. Wheeler] and lamb’s quarters (Chenopodium album L.) were usually lower (P < 0.05) in the undisturbed (i.e., no-till) system, compared to where tillage was used. It was concluded that the combination of alfalfa in rotation and no-till management can provide significant weed control benefits to cropping systems. Key words: Weed ecology, no-till cropping, forages


Weed Science ◽  
1977 ◽  
Vol 25 (4) ◽  
pp. 309-315 ◽  
Author(s):  
John D. Nalewaja ◽  
K.A. Adamczewski

Several experiments were conducted to determine the influence of temperature, relative humidity, leaf age, and additives on14C-bentazon [3-isopropyl-1H-2,1,3-benzothiadiazin-(4)3H-one 2,2-dioxide] uptake and translocation by redroot pigweed (Amaranthus retroflexusL.), wild mustard [Brassica kaber(DC.) L.C. Wheeler var.pinnatifida(Stokes) L.C. Wheeler] and soybeans (Glycine maxL. Merr. ‘Corsoy’). A water soluble linseed oil formulation enhanced absorption and translocation of the14C-label by redroot pigweed more than did emulsifiable linseed oil, petroleum oil, or a surfactant. The oil additives reduced the14C-label washed from the treated area of a leaf and increased absorption and translocation compared to bentazon applied alone. Low relative humidity and older leaves of redroot pigweed resulted in less14C-bentazon absorption than with high relative humidity or younger leaves. The addition of emulsifiable linseed oil reduced the influence of low relative humidity and leaf age upon14C-bentazon absorption. Comparative absorption and translocation of14C-bentazon was wild mustard > redroot pigweed > soybeans. Uptake and translocation of14C-bentazon by redroot pigweed was greater at 30 C than at 10 C.


Weed Science ◽  
1971 ◽  
Vol 19 (5) ◽  
pp. 592-594 ◽  
Author(s):  
B. Rubin ◽  
Y. Eshel

The phytotoxicity of 1,1-dimethyl-3-(α,α,α-trifluoro-m-tolyl)urea (fluometuron) and three of its analogs was studied on cotton (Gossypium hirsutumL.), foxtail (Setariasp.), and redroot pigweed (Amaranthus retroflexusL.). Fluometuron was the most active compound, and the demethylated derivative and aniline analog were the least phytotoxic. The activity of the monomethyl analog of fluometuron, when applied via nutrient solution and to clay soil, was about 50% and 70% of the parent compound, respectively. Photosynthesis in cotton and redroot pigweed was inhibited by fluometuron, to a lesser degree by the monomethyl analog, and not at all by the demethyl and aniline analogs. Cotton was most tolerant, and only slight differences were found between the susceptibility of foxtail and redroot pigweed. These differences in response to fluometuron and its metabolites may contribute to the differential response between cotton and weeds.


Weed Science ◽  
1980 ◽  
Vol 28 (3) ◽  
pp. 285-291 ◽  
Author(s):  
Kriton K. Hatzios ◽  
Donald Penner

Uptake and translocation of14C-buthidazole {3-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-4-hydroxy-1-methyl-2-imidazolidinone} in corn (Zea maysL.) and redroot pigweed (Amaranthus retroflexusL.) were studied following both foliar and root treatments under greenhouse and growth chamber environments. Following foliar application,14C-buthidazole was absorbed by the leaves of corn and redroot pigweed seedlings in similar amounts. Translocation occurred only toward the tip of the treated leaves in corn, whereas in redroot pigweed the14C moved both acropetally and basipetally. Rapid uptake by the roots and rapid movement to the leaves via the xylem seems to be the main pathway of uptake and translocation of14C-buthidazole supplied to the roots of redroot pigweed plants. Uptake by both the roots and the emerging coleoptile and transport to the foliage seems to be the pattern of absorption and translocation of buthidazole in corn following preemergence application. Differences in absorption did not appear to be an important factor contributing to selectivity of buthidazole between corn and redroot pigweed. However, translocation of14C-buthidazole supplied to the roots was faster to the redroot pigweed shoots than to corn shoots.


Sign in / Sign up

Export Citation Format

Share Document