Site of Uptake and Translocation of14C-Buthidazole in Corn (Zea mays) and Redroot Pigweed (Amaranthus retroflexus)

Weed Science ◽  
1980 ◽  
Vol 28 (3) ◽  
pp. 285-291 ◽  
Author(s):  
Kriton K. Hatzios ◽  
Donald Penner

Uptake and translocation of14C-buthidazole {3-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-4-hydroxy-1-methyl-2-imidazolidinone} in corn (Zea maysL.) and redroot pigweed (Amaranthus retroflexusL.) were studied following both foliar and root treatments under greenhouse and growth chamber environments. Following foliar application,14C-buthidazole was absorbed by the leaves of corn and redroot pigweed seedlings in similar amounts. Translocation occurred only toward the tip of the treated leaves in corn, whereas in redroot pigweed the14C moved both acropetally and basipetally. Rapid uptake by the roots and rapid movement to the leaves via the xylem seems to be the main pathway of uptake and translocation of14C-buthidazole supplied to the roots of redroot pigweed plants. Uptake by both the roots and the emerging coleoptile and transport to the foliage seems to be the pattern of absorption and translocation of buthidazole in corn following preemergence application. Differences in absorption did not appear to be an important factor contributing to selectivity of buthidazole between corn and redroot pigweed. However, translocation of14C-buthidazole supplied to the roots was faster to the redroot pigweed shoots than to corn shoots.

Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 568-573 ◽  
Author(s):  
Stevan Z. Knezevic ◽  
Stephan F. Weise ◽  
Clarence J. Swanton

Redroot pigweed is a major weed in corn throughout Ontario. Field experiments were conducted at two locations in 1991 and 1992 to determine the influence of selected densities and emergence times of redroot pigweed on corn growth and grain yield. Redroot pigweed densities of 0.5, 1, 2, 4 and 8 plants per m of row were established within 12.5 cm on either side of the corn row. In both years, redroot pigweed seeds were planted concurrently and with corn at the 3- to 5-leaf stage of corn growth. A density of 0.5 redroot pigweed per m of row from the first (earlier) emergence date of pigweed (in most cases, up to the 4-leaf stage of corn) or four redroot pigweed per m of row from the second (later) emergence date of pigweed (in most cases, between the 4- and 7-leaf stage of corn) reduced corn yield by 5%. Redroot pigweed emerging after the 7-leaf stage of corn growth did not reduce yield. Redroot pigweed seed production was dependent upon its density and time of emergence. The time of redroot pigweed emergence, relative to corn, may be more important than its density in assessing the need for postemergence control.


2007 ◽  
Vol 22 (3) ◽  
pp. 204-212 ◽  
Author(s):  
A.R. Rice ◽  
J.L. Johnson-Maynard ◽  
D.C. Thill ◽  
M.J. Morra

AbstractBrassicaceae seed meals produced through the oil extraction process release biologically active glucosinolate secondary products and may be useful as a part of biological weed control systems. Before meal can be used most efficiently, recommendations for suitable planting dates that maximize weed control but reduce crop injury must be determined. Our objectives were to determine the impact of 1 and 3% (w/w) meal applications of Brassica napus L. (canola), Brassica juncea L. (oriental mustard) and Sinapis alba L. (yellow mustard) on crop emergence and weed biomass in a growth chamber and field study. Results from the growth chamber experiment indicated that lettuce emergence was reduced by at least 75% when planted into 3% S. alba-amended soil earlier than 5 weeks after meal application. After 5 weeks, emergence was not different among treatments. Crop emergence was not reduced by any meal treatment as compared to the no-meal treatment in year 1 of the field study. In year 2, crop emergence in each 1.2-m row was inhibited by all meal treatments and ranged from 16 plants in the 3% B. juncea treatment to 81 plants in the no-meal treatment. The difference between emergence results in year 1 and year 2 is likely due to differing climatic conditions early in the season prior to irrigation, and the method of irrigation used. Redroot pigweed (Amaranthus retroflexus L.) biomass was 72–93% lower in 1% B. juncea and 3% treatments relative to the no-meal control in the first weed harvest of year 1. These same treatments had 87–99% less common lambsquarters (Chenopodium album L.) biomass. By the second weed harvest, redroot pigweed biomass in meal treatments (0.02–1.6 g m−2) was not different from that in the no-meal treatment (0.97 g m−2). Redroot pigweed biomass in 3% B. juncea plots was reduced by 74% relative to the no-meal treatment in the first harvest of year 2. This treatment also reduced common chickweed [Stellaria media (L.) Vill.] biomass by 99% relative to the 1% meal treatments. While pigweed biomass was reduced by 3% B. juncea in the early part of the season, by the second harvest this same treatment had the greatest pigweed biomass. Despite significant variability between years, 3% B. juncea did provide early season weed control in both years. Repeated meal applications, however, may be necessary to control late season weeds. Inhibition of crop emergence appears to be highly dependent on the amount and distribution of water and needs to be further studied in field settings.


Weed Science ◽  
1974 ◽  
Vol 22 (2) ◽  
pp. 179-184 ◽  
Author(s):  
Larry W. Hendrick ◽  
William F. Meggitt ◽  
Donald Penner

The basis for selectivity of phenmedipham (methyl-m-hydroxycarbanilatem-methylcarbanilate) and desmedipham (ethylm-hydroxycarbanilate carbanilate) on wild mustard [Brassica kaber(DC.) L.C. Wheeler ‘pinnatifida’ (Stokes) L.C. Wheeler], redroot pigweed (Amaranthus retroflexusL.), and sugar beet (Beta vulgarisL.) was studied by evaluating spray retention, absorption, translocation, and metabolism. Total photosynthesis in wild mustard was severely inhibited in less than 5 hr after foliar application of either herbicide and did not recover. Total photosynthesis in sugar beet was slightly inhibited but recovered after 24 hr. Photosynthesis in redroot pigweed recovered from a treatment of phenmedipham but did not recover when treated with desmedipham. Differences in spray retention or foliar absorption did not explain selectivity. Within 5 hr after herbicide application, redroot pigweed had translocated more desmedipham than phenmedipham from the site of absorption and had metabolized a large amount of the phenmedipham but little desmedipham. The key factor explaining selectivity appeared to be at the initial detoxication reaction of the parent compound.


Weed Science ◽  
1981 ◽  
Vol 29 (6) ◽  
pp. 648-654 ◽  
Author(s):  
David N. Duncan ◽  
William F. Meggitt ◽  
Donald Penner

Absorption, translocation, and metabolism of foliar-applied ethofumesate [(±)-2-ethoxy-2,3-dihydro-3,3-dimethyl-5-benzofuranyl methanesulphonate] were studied to explain field observations showing differences in susceptibility among sugarbeet (Beta vulgarisL.), common ragweed (Ambrosia artemisiifoliaL.), redroot pigweed (Amaranthus retroflexusL.), and common lambsquarters (Chenopodium albumL.). In laboratory studies, two- to four-leaf seedlings of the highly susceptible species, redroot pigweed and common lambsquarter, absorbed greater amounts of14C-ethofumesate from foliar application than the moderately susceptible common ragweed and tolerant sugarbeet. Sugarbeet translocated very little14C from treated foliage to untreated plant tissue. All weed species translocated14C-ethofumesate to untreated leaf tissue when14C-ethofumesate was applied to seedlings at the two-leaf stage. Ethofumesate was translocated basipetally to the stem and root of two-leaf redroot pigweed and common lambsquarter seedlings. A high percentage of the14C was found in the water-soluble fraction in sugarbeet seedlings, indicating inactivation. The amount of metabolites recovered in the non-polar fraction depended on the stage of plant growth. Total photosynthesis and respiration in redroot pigweed was inhibited 4 h after foliar application and did not recover after 96 h. Uptake and evolution of CO2were also inhibited in sugarbeet leaves, but they recovered rapidly, depending on age of plant at treatment. The stage of plant development was the key factor determining species response to foliar treatments of ethofumesate in terms of absorption, metabolism, and total photosynthesis and respiration.


Weed Science ◽  
1970 ◽  
Vol 18 (3) ◽  
pp. 357-359 ◽  
Author(s):  
Jerry D. Doll ◽  
Donald Penner ◽  
William F. Meggitt

In the presence of relatively high but non-toxic levels of phosphate, the suppression of corn (Zea mays L.) or squash (Cucurbita maxima Duchesne) seedling growth in the dark by 3-amino-2,5-dichlorobenzoic acid (amiben) or 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (atrazine) was enhanced. This effect was not due to increased uptake of either herbicide in the presence of the phosphate by roots of corn, squash, soybeans (Glycine max (L.) Merr.), or redroot pigweed (Amaranthus retroflexus L.). A proportional decrease in herbicide uptake with increasing herbicide concentration was most evident for amiben and atrazine uptake by the roots of soybean plants grown in the light.


Weed Science ◽  
1984 ◽  
Vol 32 (1) ◽  
pp. 76-83 ◽  
Author(s):  
Edward E. Schweizer ◽  
Robert L. Zimdahl

The impact of two weed management systems on the weed seed reserves of the soil, on the yearly weed problem, and on corn (Zea maysL.) production was assessed where corn was grown under furrow irrigation for 6 consecutive years. In one system, 2.2 kg/ha of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] was applied annually to the same plots as a preemergence treatment. In the other system, a mixture of 1.7 kg/ha of atrazine plus 2.2 kg/ha of alachlor [2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide] was applied preemergence, followed by a postemergence application of 0.6 kg/ha of the alkanolamine salts of 2,4-D [(2,4-dichlorophenoxy)acetic acid]. The response of weeds and corn is presented only where atrazine was applied annually because the results were similar between both weed management systems. Weed seeds from eight annual species were identified, with redroot pigweed (Amaranthus retroflexusL. ♯ AMARE) and common lambsquarters (Chenopodium album♯ CHEAL) comprising 82 and 12%, respectively, of the initial 1.3 billion weed seeds/ha that were present in the upper 25 cm of the soil profile. After the sixth cropping year, the overall decline in the total number of redroot pigweed and common lambsquarters seeds was 99 and 94%, respectively. Very few weeds produced seeds during the first 5 yr, and no weed seeds were produced during the sixth year where atrazine was applied annually. When the use of atrazine was discontinued on one-half of each plot at the beginning of the fourth year, the weed seed reserve in soil began to increase due to an increase in the weed population. After 3 yr of not using atrazine, the weed seed reserve in soil had built up to over 648 million seeds/ha, and was then within 50% of the initial weed seed population. In the fifth and sixth years, grain yields were reduced 39 and 14%, respectively, where atrazine had been discontinued after 3 yr.


Weed Science ◽  
1986 ◽  
Vol 34 (3) ◽  
pp. 440-443 ◽  
Author(s):  
E. Patrick Fuerst ◽  
Michael Barrett ◽  
Donald Penner

Various chemical treatments were evaluated over two growing seasons for control of triazine-resistant common lambsquarters (Chenopodium albumL. # CHEAL) and for control of a triazine-resistant infestation containing both redroot pigweed (Amaranthus retroflexusL. # AMARE) and Powell amaranth (A. powelliiS. Wats. # AMAPO). Atrazine [6-chloro-N-ethyl-N′-(1-methylethyl)-1,3,5-triazine-2,4-diamine], cyanazine {2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl] amino]-2-methylpropanenitrile}, and metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one] provided unsatisfactory control of these biotypes. Satisfactory control of common lambsquarters was obtained with preemergence applications of pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine] or dicamba (3,6-dichloro-2-methoxybenzoic acid), or postemergence applications of dicamba, bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), or bentazon [3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide]. Satisfactory control of pigweed was obtained with preemergence applications of alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide] or postemergence treatments of dicamba, bromoxynil, or 2,4-D [(2,4-dichlorophenoxy) acetic acid].


Sign in / Sign up

Export Citation Format

Share Document