Effects of Atrazine, Cyanazine, and Procyazine on the Photochemical Reactions of Isolated Chloroplasts

Weed Science ◽  
1979 ◽  
Vol 27 (3) ◽  
pp. 300-308 ◽  
Author(s):  
P. E. Brewer ◽  
C. J. Arntzen ◽  
F. W. Slife

The effects of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine], cyanazine {2-[[4-chloro-6-(ethylamino)-s-triazin-2-yl] amino]-2-methylpropionitrile}, and procyazine {2-[[4-chloro-6-(cyclopropylamino)-1,3,5-triazine-2-yl] amino]-2-methylpropanenitrile} on the photochemical reactions of isolated pea (Pisum sativum L. ‘Progress #9 Dwarf’) chloroplasts were studied. Atrazine, cyanazine, and procyazine inhibited electron transport but did not uncouple photophosphorylation. The primary site of inhibition for all three herbicides was on the reducing side of photosystem II; the electron transfer step between the primary electron acceptor (Q) and the plastoquinone pool of the electron transport chain is suggested as the site of action of all three herbicides. The amount of inhibition of electron transport observed after addition of herbicide to isolated chloroplasts was time-dependent for cyanazine and procyazine but not for atrazine. This was apparently due to a slower partitioning of cyanazine and procyazine from the aqueous phase of the reaction solution into the highly hydrophobic environment within the chloroplast membrane. Treatment of the thylakoid membranes with detergent reduced the time-dependent inhibitory nature of cyanazine and procyazine, and the ability of atrazine to block electron transport. A photosystem II-dependent electron transport assay and a chlorophyll fluorescence induction assay were used to determine the inhibitory potentials of atrazine, cyanazine, and procyazine. After allowing for differences in the rate of membrane penetration, I50 values of approximately 2 × 10−7 M were determined for each of the three herbicides.

1982 ◽  
Vol 60 (4) ◽  
pp. 409-412 ◽  
Author(s):  
Rungsit Suwanketnikom ◽  
Kriton K. Hatzios ◽  
Donald Penner ◽  
Duncan Bell

The effect of bentazon (3-isopropyl-1H-2,1,3-benzathiadiazin-(4)3H-one 2,2-dioxide) on various photochemical reactions of isolated spinach (Spinacea oleracea L.) chloroplasts was studied at concentrations 0, 5, 15, 45, and 135 μM. Bentazon at a concentration of 135 μM strongly inhibited uncoupled electron transport from water to ferricyanide or to methylviologen with inhibition percentages greater than 90%. Photosystem II mediated electron transport from water to oxidized diaminodurene, with 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) blocking photosystem I, was also strongly inhibited by bentazon at 135 μM but less with lower concentrations of bentazon. Photosystem I mediated transfer of electrons from diaminodurene to methylviologen, with 3,4-dichlorophenyl-1,1-dimethylurea (DCMU) blocking photosystem II, was not inhibited by bentazon at any concentration examined. Transfer of electrons from catechol to methylviologen in hydroxylamine-treated chloroplasts was inhibited by bentazon, and the inhibition percentages were again concentration dependent. The data indicate that the site of bentazon inhibition of the photosynthetic electron transport is at the reducing side of photosystem II, between the primary electron acceptor Q and plastoquinone.


1974 ◽  
Vol 29 (11-12) ◽  
pp. 725-732 ◽  
Author(s):  
Robert Bauer ◽  
Mathijs J. G. Wijnands

Abstract The effect of the plastohydroquinone antagonist dibromothym oquinone (DBMIB) on photosynthetic electron transport reactions was studied in the presence and absence of p-phenylene-diamines by means of measurements of prompt and delayed chlorophyll fluorescence induction of the green alga Scenedesm us obliquus. Prompt and delayed chlorophyll fluorescence induction phenomena are valid indicators for the native presence of and cooperation between the two photosynthetic light reactions. Their kinetics reflect the balancing of electron exchange reactions in the chain of coupled redox-systems between the two photosystems upon sudden illumination. From distinct alterations of the short-term (sec) light induced changes in the yield of prom pt and delayed chlorophyll fluorescence it is concluded that DBMIB inhibits the photosynthetic electron transport in the chain of redox-systems between the two light reactions. There is evidence to show that upon illumination of DBMIB treated cells only the reduction of primary electron ac­ceptor pools of photosystem II (i. e. Q and PQ) is still possible. After their reduction the further electron transport through photosystem II is blocked. The addition of p-phenylenediamines to DBM IB-treated cells abolishes the typical DBMIB-affected prom pt and delayed fluorescence inhibition curves and the normal induction curves re­ appear qualitatively in all their important features. From these measurements it is suggested that the redox properties of p-phenylenediamines allow an electron transport bypass of the DBMIB inhibition site which results in a fully restored photosynthetic electron transport from water to NADP.


1984 ◽  
Vol 39 (5) ◽  
pp. 510-514 ◽  
Author(s):  
Salil Bose ◽  
R. Mannar Mannan ◽  
C.J. Arntzen

Addition of BAS 13-338 (4-chloro-5-dimethylamino-2-phenyl-3(2H)-pyridazinone) to a suspension of chloroplast thylakoids caused an increase in the / level of chlorophyll fluorescence induction without affecting the F0 level and with a slight decrease in the Fmax level in a manner similar to the addition of DCMU to a thylakoid suspension. Addition of BAS 13-338 also inhibited the rate of Hill reaction H2O → dichlorophenol indophenol with 50% inhibition occurring at about 10 μм BAS 13-338. The inhibition was not reversed by diphenyl carbazide used as an artificial electron donor to photosystem II. These results suggest that the site of inhibition by BAS 13-338 is between Q (next to the primary electron acceptor) and plastoquinone.When the plants were grown in the presence of sublethal dose of BAS 13-338, the following changes were noted in the thylakoids of the treated plants as compared to the thylakoids isolated from the control plants: The F0 and the normalized variable fluorescence (⊿F/F0) levels increased, chlorophyll a/b ratio decreased, chlorophyll/P700 ratio increased. Furthermore, the rate of photosystem II electron transport both under saturated intensity and the limiting intensity of illumination increased, and the ratio of plastoquinone to Q decreased. These observations have been interpreted as due to an increase in the ratio of photosystem II to photosystem I in plants grown in the presence of BAS 13-338.


1987 ◽  
Vol 42 (6) ◽  
pp. 779-782
Author(s):  
Mordechay Schönfeld ◽  
Tuvia Yaacoby ◽  
Adi Ben-Yehuda ◽  
Baruch Rubin ◽  
Joseph Hirschberg

Triazine resistance in a mutant biotype of Phalaris paradoxa is accompanied by changes in the chlorophyll fluorescence induction curve, and by reduced quantum yield for electron transport, indicating altered photosystem II activity. However, light-saturated rates of electron transport in isolated chloroplasts, rates of CO2 uptake in leaves and dry weight production of the triazine resistant biotype, are equal or superior to those of the wild type. A single mutation in the psbA gene, leading to a serine to glycine shift at position 264 of the thylakoid membrane 32 kDa Qв- protein. was found in the herbicide resistant mutant. The results indicate that triazine resistance is not necessarily linked to inferior photosynthetic and growth performance.


1987 ◽  
Vol 42 (7-8) ◽  
pp. 779-782 ◽  
Author(s):  
Mordechay Schönfeld ◽  
Tuvia Yaacoby ◽  
Adi Ben-Yehuda ◽  
Baruch Rubin ◽  
Joseph Hirschberg

Triazine resistance in a mutant biotype of Phalaris paradoxa is accompanied by changes in the chlorophyll fluorescence induction curve, and by reduced quantum yield for electron transport, indicating altered photosystem II activity. However, light-saturated rates of electron transport in isolated chloroplasts, rates of CO2 uptake in leaves and dry weight production of the triazine resistant biotype, are equal or superior to those of the wild type. A single mutation in the psbA gene, leading to a serine to glycine shift at position 264 of the thyiakoid membrane 32 kDa Qв- protein. was found in the herbicide resistant mutant. The results indicate that triazine resistance is not necessarily linked to inferior photosynthetic and growth performance.


1978 ◽  
Vol 56 (21) ◽  
pp. 2787-2794 ◽  
Author(s):  
James Wiltens ◽  
Ulrich Schreiber ◽  
William Vidaver

Algae of higher intertidal regions tend to be tolerant of extended periods of desiccation, while many lower tidal or subtidal species do not withstand even mild water loss. (Tidal regions can be characterized as high (regularly immersed at high tide and exposed at low tide), low (emergence only during minus tides (lower than mean low tide)), or subtidal (never exposed at low tide and extending to the maximum depth at which net photosynthesis can occur).) The ecological necessity for tolerance in frequently emerged species is obvious, but the physiological basis of it is not well understood. Changes of photosynthetic partial reactions upon desiccation and rehydration of tolerant and sensitive algae were studied by measurements of chlorophyll fluorescence induction kinetics (Kautsky effect). With progressive decrease in water content the gradual disappearance of the characteristic fluorescence transients was observed in both tolerant and sensitive species. The water content ranges where typical changes occurred were species dependent. Rehydration in tolerant plants resulted in rapid recovery from severe desiccation; there was no such recovery in sensitive plants when water content was decreased below a critical value. Analysis of the fluorescence changes upon desiccation and rehydration suggests: (1) electron transport between photosystem II and photosystem I, as well as H2O splitting are the partial reactions sensitive to desiccation; (2) in the resistant Porphyra sanjuanensis, intersystem electron transport is blocked at around 25% water content; (3) further desiccation leads to loss of water-splitting activity and eventually to the complete loss of variable fluorescence photosystem II reaction centers; and (4) on rehydration intersystem electron transport begins almost immediately while recovery of H2O splitting requires several minutes.


1979 ◽  
Vol 34 (11) ◽  
pp. 1021-1023 ◽  
Author(s):  
J. J. S. van Rensen ◽  
J. H. Hobé

Abstract The herbicide 4,6-dinitro-o-cresol inhibits electron transport to ferricyanide and non-cyclic photophosphorylation for 50% at about 15 μm. At higher concentrations the photosystem I depen­dent Mehler reaction ascorbate/dichlorophenolindophenol to methyl viologen is stimulated, while cyclic photophosphorylation is inhibited. The herbicide thus is an inhibitory uncoupler. Although the chemical structure of 4,6-dinitro-o-cresol is different from that of the diuron-type herbicides, its site and mechanism of action is similar. Both 4,6-dinitro-o-cresol and diuron inhibit electron transport between the primary electron acceptor of Photosystem II and the plastoquinone pool. This causes a closing of the reaction centers of Photosystem II. The interaction with the inhibited molecule however is different for the two herbicides.


1979 ◽  
Vol 34 (11) ◽  
pp. 1010-1014 ◽  
Author(s):  
Gernot Renger

Abstract Based on the functional organization scheme of system-II-electron transport and its modification by different procedures a proteinaceous component enwrapping the redox components (plastoquinone molecules) of the acceptor side (thereby acting as regulatory element) is inferred to be the unique target for herbicidal interaction with system II. This proteinaceous component, which is attacked by trypsin, provides the receptor sites for the herbicides. Studies of the release kinetics in trypsinated chloroplasts of the inhibition of oxygen evolution with K3 [Fe (CN)6] as electron acceptor indicates, that there exists a binding area with different specific subreceptor sites rather than a unique binding site for the various types of inhibitors. Furthermore, trypsination of the proteinaceous component enhances the efficiency of the plastoquinone pool to act as a non-photochemical quencher for excitation energy.


1982 ◽  
Vol 9 (5) ◽  
pp. 587 ◽  
Author(s):  
SE Hethzerington ◽  
RM Smillie

Fast and slow chlorophyll fluorescence induction kinetics were used to follow changes in photosynthetic activity during humidity-sensitive degreening and regreening of leaves of Borya nidita Labill. During dry periods the leaves of this desiccation-tolerant plant lose chlorophyll, becoming yellow-brown and upon rehydration turn green again. This degreening process can be simulated in detached leaves by slow dehydration at 96% relative humidity. Under these conditions changes in chlorophyll fluorescence in vivo and the activities of photosystems I and II in chloroplasts isolated from dehydrated leaves indicated that degreening was accompanied initially by a stimulation of photosystem II activity and a gradual decrease in photosystem I-mediated electron transfer, while at advanced stages of degreening both photosystems were lost. Control leaves detached and kept at 100% relative humidity remained green and showed little change in chlorophyll fluorescence kinetics. During the rehydration and subsequent regreening of dry yellow leaves, photosystem I activity appeared to recover faster than photosystem II. The ability of the leaves to recover and regreen from the dried state, either on the plant or after detachment, depended upon the physiological age of the leaves at the time of dehydration.


Sign in / Sign up

Export Citation Format

Share Document