Chemical Control of Canada Thistle

Weed Science ◽  
1975 ◽  
Vol 23 (2) ◽  
pp. 116-118 ◽  
Author(s):  
A. G. Carson ◽  
J. D. Bandeen

Field studies were conducted to evaluate the effectiveness of one, two, and three annual applications of atrazine [2-chloro-4-(ethylamino) −6-(isopropylamino)-s-triazine], 2,4-D [(2,4-dichlorophenoxy) acetic acid], dicamba (3,6-dichloro-o-anisic acid), and a three way mix of dicamba, mecoprop [2-[(4-chloro-o-tolyl) oxy]propionic acid], and 2,4-D at a ratio of 7:5:20 at different stages of development for the control of Canada thistle [Cirsium arvense(L.) Scop.]. Two consecutive annual applications in all atrazine treatments achieved the same level of control as cultivation every 5 weeks. In the year of the last treatment, Canada thistle was controlled with two or more consecutive annual applications of the hormone-type herbicides (2,4-D, dicamba, and the three way mix); however, in the year following the last treatment, regrowth occurred.

Weed Science ◽  
1972 ◽  
Vol 20 (2) ◽  
pp. 163-167 ◽  
Author(s):  
James H. Hunter ◽  
Leon W. Smith

Root sections of seven Canada thistle(Cirsium arvense(L.) Scop.) ecotypes were grown under 8, 12, 14, and 16-hr photoperiods at 16, 21, and 27 C. Flowering occurred in all ecotypes under a 16-hr photoperiod. At the 14-hr photoperiod five ecotypes flowered; flowering in three of them was temperature-dependent. Shoot and root development and plant height varied with ecotype. Both the root-to-shoot ratios and the number of shoot buds formed on the roots were inversely related to temperature and length of photoperiod. Herbicides tested for their effects on Canada thistle were 4-amino-3,5,6-trichloropicolinic acid (picloram), 3,6-dichloro-o-anisic acid (dicamba), and (2,4-dichlorophenoxy)acetic acid (2,4-D). Control of top growth increased with increasing temperature. Similarly, root control was maximum at 27 C, at which temperature there were few fleshy roots. Picloram, unlike 2,4-D and dicamba, caused little leaf damage but completely destroyed the root system.


Weed Science ◽  
1975 ◽  
Vol 23 (6) ◽  
pp. 458-461 ◽  
Author(s):  
A. G. Ogg

Canada thistle [Cirsium arvense(L.) Scop.] and field bindweed (Convolvulus arvensisL.) were controlled in asparagus (Asparagus officinalisL. ‘Mary Washington’) fields by repeated applications of dicamba (3,6-dichloro-o-anisic acid) at 0.6 kg/ha or 2,4-D [(2,4-dichlorophenoxy)acetic acid] + dicamba at 1.1 + 0.3 or 1.1 + 0.6 kg/ha. Applications of 2,4-D + dicamba at 1.1 + 0.6 kg/ha in early May and again in mid-June controlled 97% of the Canada thistle in asparagus fields. A third application about August 1 was required to give similar control of field bindweed. Rates of dicamba exceeding 0.6 kg/ha injured the asparagus.


Weed Science ◽  
1984 ◽  
Vol 32 (6) ◽  
pp. 819-823 ◽  
Author(s):  
B. Jack Johnson

Bermudagrass [Cynodon dactylon(L.) Pers. ‘Tifway’] injured by MSMA (monosodium methanearsonate) plus metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5(4H)-one] or 2,4-D [(2,4-dichlorophenoxy)acetic acid] plus mecoprop {2-[(4-chloro-o-tolyl)oxy] propionic acid} plus dicamba (3,6-dichloro-o-anisic acid) recovered more rapidly when nitrogen (N) was applied in sequence with the herbicides than when no N was applied. Bermudagrass recovery was faster with less injury within 2 weeks after herbicide treatment when N was applied at the first MSMA plus metribuzin treatment or when N was applied at 2 weeks after the first 2,4-D plus mecoprop plus dicamba treatment. Turf quality at 4 weeks or later was consistently as good or better in plots where N was applied at 2 weeks after the first application of either herbicide combination than when N was applied earlier.


Weed Science ◽  
1972 ◽  
Vol 20 (1) ◽  
pp. 68-70 ◽  
Author(s):  
J. M. Hodgson ◽  
H. D. Moore

Canada thistle(Cirsium arvense(L) Scop.) includes many regional races that are heritable, distinct ecotypes. When cultured at Bozeman, Montana a group of these ecotypes varied in phenological, morphological, and anatomical characteristics. These ecotypes also responded differently to (2,4-dichlorophenoxy)acetic acid (2,4-D) and 3-amino-s-triazole (amitrole). Stomatal frequency and area on leaves also differed among ecotypes studied. Although stomatal frequency and stomatal area differed among the ecotypes studied, there was no correlation with herbicide response. Apparently, stomata were not a significant portal of entry of 2,4-D into the upper surface of Canada thistle leaves.


Weed Science ◽  
1985 ◽  
Vol 33 (2) ◽  
pp. 238-243 ◽  
Author(s):  
B. Jack Johnson ◽  
Robert E. Burns

Oxadiazon [2-tert-butyl-4(2,4-dichloro-5-isopropoxyphenyl)-δ2-1,3,4-oxadiazolin-5-one] applied to dormant bermudagrass [Cynodon dactylon(L.) Pers. ‘Tifway’ ♯ CYNDA] retarded early foliar growth more than other herbicides evaluated. When bensulide [O,O-diisopropyl phosphorodithioateS-ester withN-(2-mercaptoethyl)benzenesulfonamide] treatments were delayed until after bermudagrass initiated spring growth, foliar growth and quality were generally lower than when the treatments were applied to dormant turf. Retardation of early foliar bermudagrass growth by 2,4-D [(2,4-dichlorophenoxy)acetic acid] + mecoprop {2-[(4-chloro-o-tolyl)oxy] propionic acid} + dicamba (3,6-dichloro-o-anisic acid) was generally the same whether applied to dormant or semidormant turf. This combination of herbicides reduced the quality and density of bermudagrass when applied to growing but not to dormant turf. Atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] did not retard bermudagrass growth or affect density whether applied to dormant or semidormant turf, but turf quality was slightly lower when atrazine was applied to semidormant turf.


Weed Science ◽  
1983 ◽  
Vol 31 (6) ◽  
pp. 883-888 ◽  
Author(s):  
B. J. Johnson

Tank mixtures of herbicides for control of emerged winter weeds and preemergence control of large crabgrass [Digitaria sanguinalis(L.) Scop. # DIGSA] were evaluated on bermudagrass [Cynodon dactylon(L.) Pers. ‘Common’ # CYNDA] fairways over a 2-yr period. Glyphosate [N-(phosphonomethyl)glycine] applied at 0.28 kg ai/ha in tank mixtures with DCPA (dimethyl tetrachloroterephthate) at 11 kg ai/ha controlled a higher percentage of parsley-piert (Alchemilla microcarpaBoiss. Reut. # APHMI) than either herbicide alone. When applied for spur weed (Solivaspp.) control, DCPA was antagonistic in the tank mixture with simazine [2-chloro-4,6-bis(ethylamino)-s-txiazine]. During one yr of the 2-yr study period, control of large crabgrass was less in plots treated with combination of DCPA and glyphosate than in plots treated with DCPA alone. Less large crabgrass control was obtained in plots treated with bensulide [O,O-diisopropyl phosphorodithioateS-ester withN-(2-mercaptoethyl)benzenesulfonamide] at 11 kg ai/ha in combinations with either paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) or 2,4-D [(2,4-dichlorophenoxy)acetic acid] plus mecoprop {2-[(4-chloro-o-tolyl)oxy]propionic acid} plus dicamba (3,6-dichloro-o-anisic acid) than when treated only with bensulide.


Weed Science ◽  
1970 ◽  
Vol 18 (2) ◽  
pp. 253-255 ◽  
Author(s):  
J. M. Hodgson

Root sections of Canada thistle (Cirsium arvense (L.) Scop.) ecotypes from different states were field planted at Bozeman, Montana. Canada thistle survival from repeated applications of (2,4-dichlorophenoxy)acetic acid (2,4-D), and 3-amino-1,2,4-triazole (amitrole) was markedly different. Ecotypes varied less markedly to cultivation although they differed significantly. Resistance of ecotypes to cultivation seemed related to adaptation to site while resistance to herbicides apparently was related to inherent physiological differences as well as to differences in adaptation.


Weed Science ◽  
1973 ◽  
Vol 21 (6) ◽  
pp. 556-560 ◽  
Author(s):  
J. D. Altom ◽  
J. F. Stritzke

The degradation rates of 2,4-D [(2,4-dichlorophenoxy)acetic acid], dichlorprop [2-(2,4-dichlorophenoxy)propionic acid], 2,4,5-T [(2,4,5-trichlorophenoxy)acetic acid], silvex [2,(2,4,5-trichlorophenoxy)propionic acid], dicamba (3,6-dichloro-o-anisic acid), and picloram (4-amino-3,5,6-trichloropicolinic acid) were determined in three soils. Herbicide breakdown was proportional to herbicide concentration, so half life of the various herbicides was calculated from linear regression of the logarithm transformed residue data. The average half life for 2,4-D, dichlorprop, silvex, 2,4,5-T, dicamba, and picloram were, respectively, 4 days, 10 days, 17 days, 20 days, 25 days, and greater than 100 days. The rate of degradation of 2,4-D was the same in all three soils, but for the other herbicides it was consistently faster in soil removed from under grass vegetation than from under trees.


Weed Science ◽  
1975 ◽  
Vol 23 (6) ◽  
pp. 465-469
Author(s):  
L. A. Morrow ◽  
M. K. McCarty

Plots were established in 1970 in the Nebraska Sandhills for the control of green sagewort (Artemisia campestris L.). Herbicides were applied in 1970; 1970 and 1971; 1970, 1971, and 1972; and 1970 and 1972. Nitrogen fertilizer at 45 kg/ha was applied in 1973. Herbicide treatments included 2,4-D amine [(2,4-dichlorophenoxy)acetic acid], 2,4-D ester, 2,4,5-T [(2,4-5-trichlorophenoxy)acetic acid], silvex [2-(2,4,5-trichlorophenoxy)propionic acid], and mixtures of picloram (4-amino-3,5,6-trichloropicolinic acid) or dicamba (3,6-dichloro-o-anisic acid) and 2,4-D amine. Herbicides were most effective for the control of broadleaf weeds when they were applied in 3 consecutive years or in alternate years. Herbicides applied only once did not effectively control broadleaf weeds. When nitrogen was applied after weed control treatments, weed production increased if herbicide applications were not effective. If weed control treatments were effective, nitrogen did not affect weed production.


Weed Science ◽  
1982 ◽  
Vol 30 (5) ◽  
pp. 467-475 ◽  
Author(s):  
W. Thomas Lanini ◽  
Steven R. Radosevich

The selectivity of five foliage-applied herbicides, 2,4-D [(2,4-dichlorophenoxy)acetic acid], dichlorprop [2-(2,4-dichlorophenoxy)propionic acid], glyphosate [N-(phosphonomethyl)glycine], fosamine [ethyl hydrogen (aminocarbonyl)phosphonate], and triclopyr {[(3,5,6-trichloro-2-pyridinyl)oxy] acetic acid}, applied at three phenological stages of development to five Sierran shrub species, deerbrush [Ceanothus integerrimusvar.californicus(Kell.) G. T. Benson.], greenleaf manzanita (Arctostaphylos patulaGreene), bearmat (Chamaebatia foliolosaBenth.), snowbrush ceanothus (Ceanothus velutinusDougl.), and whiteleaf manzanita (Arctostaphylos viscidaParry), was compared. Treatments in the summer and fall were less effective than spring applications. Periods of herbicide susceptibility generally corresponded to times when moisture stress was low and photosynthesis was high.


Sign in / Sign up

Export Citation Format

Share Document