Weed Seed Decline in Irrigated Soil after Rotation of Crops and Herbicides

Weed Science ◽  
1984 ◽  
Vol 32 (1) ◽  
pp. 84-89 ◽  
Author(s):  
Edward E. Schweizer ◽  
Robert L. Zimdahl

The impact of two weed management systems on the weed seed reserves of the soil, on the yearly weed problem, and on barley (Hordeum vulgareL. ‘Steptoe’), corn (Zea maysL. ‘Pioneer 3709′), and sugarbeet (Beta vulgarisL. ‘Mono Hy D2′) production was assessed where these crops were grown in rotation for 6 consecutive years. Weeds were controlled in each crop with a moderate (system I) or intensive (system II) level of herbicides, plus conventional tillage. Weed seeds from seven annual genera were identified, with redroot pigweed(Amaranthus retroflexusL. ♯3AMARE) andChenopodiumcomprising 56 and 30%, respectively, of the initial 1377 million weed seeds/ha that were present in the upper 25 cm of the soil profile. After the sixth cropping year, the overall decline in the total number of weed seeds in soil was 96% in system I and 97% in system II. Over the 6-yr period, about 1.3 times more weeds escaped control in system I than in system II; and within a crop, the fewest number of weeds escaped annually in sugarbeets, and the most in barley. Yields of barley grain, corn silage, and recoverable sucrose were similar each year in the two weed management systems.

Weed Science ◽  
1984 ◽  
Vol 32 (1) ◽  
pp. 76-83 ◽  
Author(s):  
Edward E. Schweizer ◽  
Robert L. Zimdahl

The impact of two weed management systems on the weed seed reserves of the soil, on the yearly weed problem, and on corn (Zea maysL.) production was assessed where corn was grown under furrow irrigation for 6 consecutive years. In one system, 2.2 kg/ha of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] was applied annually to the same plots as a preemergence treatment. In the other system, a mixture of 1.7 kg/ha of atrazine plus 2.2 kg/ha of alachlor [2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide] was applied preemergence, followed by a postemergence application of 0.6 kg/ha of the alkanolamine salts of 2,4-D [(2,4-dichlorophenoxy)acetic acid]. The response of weeds and corn is presented only where atrazine was applied annually because the results were similar between both weed management systems. Weed seeds from eight annual species were identified, with redroot pigweed (Amaranthus retroflexusL. ♯ AMARE) and common lambsquarters (Chenopodium album♯ CHEAL) comprising 82 and 12%, respectively, of the initial 1.3 billion weed seeds/ha that were present in the upper 25 cm of the soil profile. After the sixth cropping year, the overall decline in the total number of redroot pigweed and common lambsquarters seeds was 99 and 94%, respectively. Very few weeds produced seeds during the first 5 yr, and no weed seeds were produced during the sixth year where atrazine was applied annually. When the use of atrazine was discontinued on one-half of each plot at the beginning of the fourth year, the weed seed reserve in soil began to increase due to an increase in the weed population. After 3 yr of not using atrazine, the weed seed reserve in soil had built up to over 648 million seeds/ha, and was then within 50% of the initial weed seed population. In the fifth and sixth years, grain yields were reduced 39 and 14%, respectively, where atrazine had been discontinued after 3 yr.


Weed Science ◽  
1988 ◽  
Vol 36 (6) ◽  
pp. 840-845 ◽  
Author(s):  
Edward E. Schweizer ◽  
Donald W. Lybecker ◽  
Robert L. Zimdahl

The impact of four weed management systems on weed seed reserves in soil, yearly weed problem, and production of barley, corn, pinto bean, and sugarbeet was assessed where these crops were grown in rotation for 4 consecutive years in four cropping sequences. Weeds were controlled in each crop with only conventional tillage or conventional tillage plus minimum, moderate (system 1), and intensive (system 2) levels of herbicides. Seed of annual weeds from 11 genera were identified, with barnyardgrass and redroot pigweed comprising 66 and 19%, respectively, of the initial 90 million weed seed/ha present in the upper 25 cm of the soil profile. After the fourth cropping year, overall decline in total number of weed seed in soil was 53% when averaged over four cropping sequences and four weed management systems. Over the 4-yr period, about 10 times more weeds escaped control in system 1 than in system 2; and within a crop, the fewest number of weeds escaped control annually in barley. System 2 had the highest herbicide use in each cropping sequence, the fewest weeds at harvest, and the smallest adjusted gross return over the 4-yr period in three of four cropping sequences.


1989 ◽  
Vol 3 (1) ◽  
pp. 162-165 ◽  
Author(s):  
Edward E. Schweizer ◽  
Robert L. Zimdahl ◽  
Rome H. Mickelson

The impact of three till-plant and two weed management systems on weed seed reserves of soil, yearly weed problems, and corn production was assessed under center-pivot irrigation for 3 consecutive years. Annual weeds were controlled in disced, bedded, and strip rotary till-plant systems with a moderate or intensive level of herbicides. Weed seed of seven annual weed species were identified, with common lambsquarters and stinkgrass, comprising 45 and 41%, respectively, of the initial 305 million seed/ha in the upper 25 cm of the soil profile. After the third cropping year, overall decline in total seed number in soil was 45% when averaged over till-plant and weed management systems. Grain yields did not differ between weed management systems, but the disced till-plant system produced 16% less grain than the bedded and strip rotary till-plant systems over 2 yr.


2020 ◽  
Vol 12 (15) ◽  
pp. 6103
Author(s):  
Ali reza Safahani Langeroodi ◽  
Roberto Mancinelli ◽  
Emanuele Radicetti

Quinoa cultivation is well-adapted to sustainable cropping systems, even if seed yield could be severely limited due to several constraints, such as weeds. Field trials were performed in Gorgan (Iran) to quantify the effects of agro-ecological service crops (rye, CCr; winter vetch, CCw; and no cover, CC0), tillage regimes (conventional tillage, CT; and no-tillage, ZT), and herbicide rates (100% rate, H100; 75% rate, H75; and without herbicide, H0). Weed characteristics and quinoa yield were measured. Quinoa seed yield was the highest in CCw-ZT-H100. Seed yield in H100 and H75 were higher compared with H0 (2.30 vs. 1.58 t ha−1, respectively). Under conventional tillage, 46% of weed seeds were observed in the 0–10 cm soil layer and 54% in 10–20 cm soil layers, respectively, while, under no-tillage, about 63% of weed seeds were located up to 10 cm of soil. Amaranthus retroflexus L. was the most abundant species. The total weed density was the lowest in CCr-ZT-H100 and tended to be higher in CC0 (30.9 plant m−2) and under CT (29.0 plant m−2). These findings indicate that cover crops have potential for managing weeds in quinoa; however, their inclusion should be supported by chemical means to maintain high seed.


Weed Science ◽  
2019 ◽  
pp. 1-23 ◽  
Author(s):  
Lovreet S. Shergill ◽  
Kreshnik Bejleri ◽  
Adam Davis ◽  
Steven B. Mirsky

Abstract Harvest weed seed control (HWSC) technology such as impact mills that destroy weed seeds in seed-bearing chaff material during grain crop harvest, has been highly effective in Australian cropping systems. However, the impact mill has never been tested in soybeans and weeds common to soybean production systems in the Midwest and Mid-Atlantic US. We conducted stationary testing of Harrington Seed Destructor (HSD) impact mill and winter burial studies during 2015-2016 and 2017-2018 to determine (i) the efficacy of the impact mill to target weed seeds of seven common weeds in Midwestern and five in Mid-Atlantic US, and (ii) the fate of impact mill processed weed seeds after winter burial. The impact mill was highly effective in destroying seeds of all the species tested, with 93.5-99.8% weed seed destruction in 2015 and 85.6-100% in 2017. The weak relationships (positive or negative) between seed size and seed destruction by impact mill, and high percentage of weed seed destruction by impact mill across all seed sizes indicate that the biological or practical effect of seed size is limited. The impact mill-processed weed seeds that retained at least 50% of their original size, labeled as potentially viable seed (PVS), were buried for 90 d over winter to determine the fate of weed seeds after winter burial. At 90 d after burial (DAB), the impact mill processed PVS were significantly less viable than unprocessed control seeds, indicating that impact mill processing physically damaged the PVS and promoted seed mortality over winter. A very small fraction (< 0.4%) of the total weed seed processed by the impact mill remained viable after winter burial. The results presented here demonstrate that the impact mill is highly effective in increasing seed mortality and could potentially be used as a HWSC tactic for weed management in this region.


Weed Science ◽  
1988 ◽  
Vol 36 (6) ◽  
pp. 846-849 ◽  
Author(s):  
Donald W. Lybecker ◽  
Edward E. Schweizer ◽  
Robert P. King

An economic analysis of four weed management systems employed on four crop sequences in a barley-corn-pinto bean-sugarbeet rotation in eastern Colorado was computed. Weeds were controlled in each crop with only conventional tillage or conventional tillage plus minimum levels of herbicides (systems 3 and 4), moderate levels of herbicides (system 1), or intensive levels of herbicides (system 2). Adjusted gross returns were higher for systems 3 and 4 where herbicide use was less/year and decreased over 4 yr than for systems 1 and 2 where herbicide use was higher/year and constant. When the four crop sequences were aggregated using yield and sucrose indices, the least herbicide-intensive weed management system had $440/ha/4 yr higher indexed adjusted gross return than the most herbicide-intensive weed management system. An income risk analysis showed that the herbicide-intensive weed management system was not risk efficient and that producers would select one of the other three less herbicide-intensive weed management systems depending upon their risk preferences.


Weed Science ◽  
1987 ◽  
Vol 35 (3) ◽  
pp. 328-332 ◽  
Author(s):  
Robert M. Menges

The influence of two weed management systems was determined on weed seed and seedling populations and on yields of cantaloupe (Cucumis meloL. var.reticulatusNaudin ‘Perlita′), bell pepper (Capsicum annuumL. var.grossum‘Grande Rio 66′), cotton (Gossypium hirsutumL. ‘CP 3374′), onion (Allium cepaL. ‘1015Y′), and cabbage (Brassica oleracea, var.capitataL. 'Sanibel′) sequentially grown in two 3-yr cycles. Palmer amaranth (Amaranthus palmeriS. Wats. # AMAPA) did not exist initially, but hurricane-introduced seed populations increased to 1.1 billion/ha as seed populations of common purslane (Portulaca oleraceaL. # POROL) decreased from 786 million/ha to 124 million/ha in the 6-yr period, without weeding or herbicide. Use of herbicides and handweeding reduced Palmer amaranth seed populations 98%, but 18 million/ha still remained after 6 yr. The use of herbicides and Palmer amaranth interference decreased the seed populations of common purslane by 84%, but handweeding was inefficient. Yields of all but the first crop of cantalouple were almost totally eliminated by season-long interference of Palmer amaranth. Savings with the utilization of herbicides rather than handweeding ranged from $62/ha for cotton to $4703/ha for bell pepper.


2008 ◽  
Vol 22 (3) ◽  
pp. 486-492 ◽  
Author(s):  
Andrew W. Lenssen

In the semiarid northern Great Plains, the adoption of zero tillage improves soil water conservation, allowing for increased crop intensification and diversification. Zero-tillage crop production relies heavily on herbicides for weed management, particularly the herbicide glyphosate, increasing selection pressure for herbicide-resistant weeds. Barley is well adapted to the northern Great Plains, and may be a suitable herbicide-free forage crop in zero-tillage systems. A 2-yr field study was conducted to determine if planting date influenced crop and weed biomass, water use (WU), and water-use efficiency (WUE) of barley and weed seed production in three preplant weed management systems: (1) conventional preplant tillage with a field cultivator (TILL); (2) zero tillage with preemergence glyphosate application (ZTPRE); and (3) zero tillage without preemergence glyphosate (ZT). None of the systems included an in-crop herbicide. Planting dates were mid-April (early), late May (mid), and mid-June (delayed). Early planting of ZT barley resulted in excellent forage yields (7,228 kg/ha), similar to those from TILL and ZTPRE. Early planting resulted in a small accumulation of weed biomass, averaging 76 kg/ha, and no weed seed production regardless of preplant weed management system. Early planting resulted in higher WU than delayed planting, averaging 289 and 221 mm, respectively, across management systems and years. The WUE of crop and total biomass did not differ among preplant weed management systems at harvest from the early planting date. Delayed planting resulted in decreased forage yield with high amounts of weed biomass and seed production, especially in ZT. A pre-emergence glyphosate application was not necessary for early-planted ZT forage barley. Early planting of herbicide-free barley for forage can be an excellent addition to northern Great Plains cropping systems as part of a multitactic approach for improved weed and water management.


Weed Science ◽  
2009 ◽  
Vol 57 (5) ◽  
pp. 533-540 ◽  
Author(s):  
Richard G. Smith ◽  
Randa Jabbour ◽  
Andrew G. Hulting ◽  
Mary E. Barbercheck ◽  
David A. Mortensen

The transition period to certified organic production can present a significant weed management challenge for growers. Organic certification requires that prohibited fertilizers and pesticides must not have been used for 36 mo before harvest of the first organic crop. Understanding how organic management practices and initial weed seed-bank densities affect weed population dynamics during the transition period may improve weed management efficacy and adoption of organic practices. We examined how tillage systems (full or reduced) and cover crop species planted during the first transition year (rye or a mixture of timothy and red clover) affect the seedling densities of three common annual weed species, common lambsquarters, velvetleaf, and foxtail spp., during the 3-yr transition period. Weed seeds were applied in a one-time pulse at the beginning of the study at three densities, low, medium, and high (60, 460, and 2,100 seeds m−2, respectively), and cumulative seedling densities of each species were assessed annually. Treatment factors had variable and species-specific effects on weed seedling densities. In general, the full-tillage system, with an initial cover crop of timothy and red clover, resulted in the lowest density of weed seedlings following seed-bank augmentation. There was little consistent association between the initial densities of applied weed seeds in the weed seed bank at the start of the transition and weed seedling densities at the end of the transition period. This suggests that when multiple crop and weed cultural management practices are employed during the organic transition period, initial failures in weed management may not necessarily lead to persistent and intractable annual weed species management problems following organic certification.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1688 ◽  
Author(s):  
Christoph Glasner ◽  
Christopher Vieregge ◽  
Josef Robert ◽  
Johanna Fenselau ◽  
Zahra Bitarafan ◽  
...  

During harvesting, grain, straw, and chaff with weed seeds are separated. The chaff is returned to the fields, resulting in weed problems in the subsequent crops. We estimated the fraction of weed seeds a combine harvester could potentially harvest and used various methods to collect the chaff and treat it with heat to kill weed seeds or reduce weed seed germination. Chaff with weed seeds was placed on top of the straw and afterwards baled with the straw as a method to remove weed seeds from the field. We exposed chaff with weed seeds to exhaust gas with various temperatures and durations to study whether this heating method could be used to reduce the input of viable weed seeds to the soil during harvesting. By collecting the shed weed seeds during the growing season, we estimated that a combine harvester could potentially harvest 41%, 11%, and 100% of the seeds produced in the growing season by Bromus hordeaceus, Cirsium arvense, and Galium aparine, respectively. When the chaff was placed on top of the straw, 45% of the weed seeds stayed in the chaff fraction on top of the straw swath after one day, 35% got into the straw swath, and 20% past through the swath to the ground. Therefore, baling straw with chaff placed on the top only had a limited effect on reducing weed seed infestation. The study showed that thermal weed seed control during harvesting could potentially be applicable and incorporated in an integrated weed management approach.


Sign in / Sign up

Export Citation Format

Share Document