scholarly journals Red Variables of the Halo and the Globular Clusters

1975 ◽  
Vol 67 ◽  
pp. 531-540
Author(s):  
T. Lloyd Evans

The present state of knowledge of the red variables in the halo and globular clusters is summarized. Techniques for their discovery are described. The correlations between their properties and those of the globular clusters to which they belong are discussed. The evolutionary state of the variables is considered and stars are assigned tentatively to the first or second ascent of the giant branch or to the excursions from the asymptotic giant branch resulting from instabilities in the He-burning shell.The assumption that a recognizable type of variable represents a unique type of star leads to the conclusions that the bulk of the stars in the central bulge of the Galaxy are more metal-rich than 47 Tuc and that the Large Magellanic Cloud contains an old, moderately metal-deficient population similar to that represented by clusters such as 47 Tuc in the Galaxy while the Small Magellanic Cloud does not.

1991 ◽  
Vol 148 ◽  
pp. 161-164 ◽  
Author(s):  
S. van den Bergh

Star clusters in the Magellanic Clouds (MCs) differ from those in the Galaxy in a number of respects: (1) the Clouds contain a class of populous open clusters that has no Galactic counterpart; (2) Cloud clusters have systematically larger radii rh than those in the Galaxy; (3) clusters of all ages in the Clouds are, on average, more flattened than those in the Galaxy. In the Large Magellanic Cloud (LMC) there appear to have been two distinct epochs of cluster formation. LMC globulars have ages of 12-15 Gyr, whereas most populous open clusters have ages <5 Gyr. No such dichotomy is observed for clusters in the Small Magellanic Cloud (SMC) The fact that the SMC exhibits no enhanced cluster formation at times of bursts of cluster formation in the LMC, militates against encounters between the Clouds as a cause for enhanced rates of star and cluster formation.


1984 ◽  
Vol 108 ◽  
pp. 223-224
Author(s):  
Horace A. Smith ◽  
Leo Connolly

The Small Magellanic Cloud is known to contain types of short period Cepheid variable stars not yet discovered in either the Large Magellanic Cloud or, with the exception of a single star, in the Galaxy. These variables can be divided into two categories: anomalous Cepheids and Wesselink-Shuttleworth (WS) stars. The former, which have also been found in dwarf spheroidal systems and in the globular cluster NGC 5466, have periods of 0.4–3 days, but average 0.7–1.0 mag. brighter than RR Lyrae and BL Her stars of equal period. The stars we call WS stars have periods less than about 1.1 day and, at MV = −1 to −2, are brighter than anomalous Cepheids of equal period.


1984 ◽  
Vol 108 ◽  
pp. 27-28
Author(s):  
S. Michael Fall ◽  
Carlos S. Frenk

We have measured the ellipticities of 52 globular clusters in the LMC and 93 in the Galaxy by eye from polaroid enlargements of the sky surveys (Frenk & Fall 1982). In most cases, the measurements pertain to regions between (1–2)rh where rh is the median radius of a cluster; i.e. the radius containing half of the light in three dimensions. These were compared with determinations based on star counts for 12 members of the LMC sample and 19 members of the Galactic sample. We found no systematic difference between the ellipticities from the two methods and concluded that the eye-measurements are free of any major bias. They are also in reasonable agreement with the measurements by Geyer & Richtler (1981) and Geyer, Hopp & Nelles (1983), who used the Agfa contourfilm technique. The ellipticities measured by Geisler & Hodge (1980) from microdensitometer scans are systematically large in comparison with our results and those of Geyer and his associates. Since the scans cover only a small part of each cluster, a few bright stars can cause spurious elongations in the fitted contours.


1994 ◽  
Vol 423 ◽  
pp. 294 ◽  
Author(s):  
Giuseppe Bono ◽  
Filippina Caputo ◽  
Robert F. Stellingwerf

1982 ◽  
Vol 99 ◽  
pp. 469-472
Author(s):  
Y.-H. Chu

Using strict selection criteria, we have searched for ring nebulae associated with Wolf-Rayet stars in the Galaxy and the Magellanic Clouds. In our search, 15 WR ring nebulae are identified in the Galaxy (Chu 1981a; Chu 1981b, Paper G1), 9 in the Large Magellanic Cloud, and none in the Small Magellanic Cloud (Chu and Lasker 1980, Paper LI; Chu 1981a). We have subsequently observed the morphology and kinematics of these 24 nebulae to study their nature. The data and analyses are reported in G (galactic) and L (LMC) series of papers. These nebulae and their references are listed in Table 1. This table is nearly, but not quite, complete. An extremely careful search might result in more cases, e.g., NGC6357 (Lortet et al. 1981). In a later search by Heckathorn et al. (1982), more ring nebulae are suggested; however, only three cases (associated with HD92740, HD187282, and HD211564) are more convincing. We have obtained some data for these nebulae and will discuss them in a conclusion paper of the galactic series (Chu et al. 1982, Paper G8).


1973 ◽  
Vol 21 ◽  
pp. 150-150
Author(s):  
Serge Demers

AbstractPhotographic B and V light curves are determined for six variables, with periods longer than one day, in and near NGC 1751, NGC 1953, and NGC 2121. New photoelectric sequences are used to calibrate the plates. The mean magnitudes and colours of these variables are similar to the magnitudes and colours of Classical Cepheids of the same period. The photometric properties of these variables are unlike Population II Cepheids in the Galaxy but are comparable to field Cepheids of the Large Magellanic Cloud.


Author(s):  
Nada El-Falou ◽  
Jeremy J Webb

Abstract The tidal tails of globular clusters have been shown to be sensitive to the external tidal field. We investigate how Galactic globular clusters with observed tails are affected by satellite dwarf galaxies by simulating tails in galaxy models with and without dwarf galaxies. The simulations indicate that tidal tails can be subdivided into into three categories based on how they are affected by dwarf galaxies: 1) dwarf galaxies perturb the progenitor cluster’s orbit (NGC 4590, Pal 1, Pal 5), 2) dwarf galaxies perturb the progenitor cluster’s orbit and individual tail stars (NGC 362, NGC 1851, NGC 4147, NGC 5466, NGC 7492, Pal 14, Pal 15), and 3) dwarf galaxies negligibly affect tidal tails (NGC 288, NGC 5139, NGC 5904, Eridanus). Perturbations to a cluster’s orbit occur when dwarf galaxies pass within its orbit, altering the size and shape of the orbital and tail path. Direct interactions between one or more dwarf galaxies and tail stars lead to kinks and spurs, however we find that features are more difficult to observe in projection. We further find that the tails of Pal 5 are shorter in the galaxy model with dwarf galaxies as it is closer to apocentre, which results in the tails being compressed. Additional simulations reveal that differences between tidal tails in the two galaxy models are primarily due to the Large Magellanic Cloud. Understanding how dwarf galaxies affect tidal tails allows for tails to be used to map the distribution of matter in dwarf galaxies and the Milky Way.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 470-471
Author(s):  
B. A. Sargent ◽  
S. Srinivasan ◽  
A. Speck ◽  
K. Volk ◽  
F. Kemper ◽  
...  

AbstractWe analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of red supergiant (RSG) and oxygen-rich asymptotic giant branch (AGB) stars in the Large Magellanic Cloud and Small Magellanic Cloud galaxies and in various Milky Way globular clusters. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper), the Spitzer program SMC-Spec (PI: G. Sloan), and other archival Spitzer-IRS programs. The broad 10 and 20 micron emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We investigate differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars and assess effects of varying metallicity (LMC versus SMC versus Milky Way globular cluster) and other properties (mass-loss rate, luminosity, etc.) on the dust originating from these stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.


2016 ◽  
Vol 12 (S323) ◽  
pp. 384-385
Author(s):  
Marcin Gładkowski ◽  
Marcin Hajduk ◽  
Igor Soszyński

AbstractThe Optical Gravitational Experiment (OGLE) was effectively used in discovering binary central stars of planetary nebulae (CSPNe). About 50 binary CSPNe have been hitherto identified in the Galaxy, almost half of them were detected in the OGLE database. We used the OGLE data to search for binary CSPNe in the Magellanic Clouds. We also searched for PNe mimics and removed them from the PNe sample. Here, we present results of the photometric analysis for Small Magellanic Cloud (SMC) and our progress on search of binary central stars in the Large Magellanic Cloud (LMC). So far, we have discovered one binary central star of the PN beyond the Milky Way, which is located in the Small Magellanic Cloud.


Sign in / Sign up

Export Citation Format

Share Document