scholarly journals On a mechanism that structures galaxies

1979 ◽  
Vol 84 ◽  
pp. 157-158
Author(s):  
D. Lynden-Bell

By considering the interaction of a single stellar orbit with a weak cos 2Φ potential it is shown that in the central regions of galaxies with slowly rising rotation curves, the elongations of the orbits will align along any potential valley and oscillate about it. This effect is more pronounced for elongated orbits. In such regions any pair of orbits will naturally align under their mutual gravity and so a bar will form. The gravity of this bar will drive a spiral structure in the outer parts of the galaxy where differential rotation is too strong to allow the orbits to be caught by the bar. The spiral structure carries a torque which slowly drains angular momentum from the bar, gradually making its outline more eccentric and slowing its pattern speed. In the outer parts of the bar only the more eccentric orbits align with the potential valley; the rounder ones form a ring or lens about the bar. As the pattern speed slows down, the corotation resonance and outer Lindblad resonance, which receive the angular momentun, move outwards. The evolution of the system is eventually slowed down by the weakness of these outer resonances where the material is rather sparse.

1979 ◽  
Vol 84 ◽  
pp. 151-153
Author(s):  
James W-K. Mark ◽  
Linda Sugiyama ◽  
Robert H. Berman ◽  
Giuseppe Bertin

A concentrated nuclear bulge with about 30% of the galaxy mass is sufficient (Lin, 1975; Berman and Mark, 1978) to eliminate strong bar-forming instabilities which dominate the dynamics of the stellar disk. Weak bar-like or oval distortions might remain depending on the model. In such systems self-excited discrete modes give rise to global spiral patterns which are maintained in the presence of differential rotation and dissipation (cf. especially the spiral patterns in Bertin et al., 1977, 1978). These spiral modes are standing waves that are physically analyzable (Mark, 1977) into a superposition of two travelling waves propagating in opposite directions back and forth between galactic central regions and corotation (a resonator). Only a few discrete pattern frequencies are allowed. An interpretation is that the central regions and corotation radius must be sufficiently far apart so that a Bohr-Sommerfeld type of phase-integral condition is satisfied for the wave system of each mode. The temporal growth of these modes is mostly due to an effect of Wave Amplification by Stimulated Emission (of Rotating Spirals, abbrev. WASERS, cf. Mark 1976) which occurs in the vicinity of corotation. In some galaxies one mode might be predominent while other galaxies could exhibit more complicated spiral structure because several modes are present. Weak barlike or oval distortions hardly interfere with the structure of these modes. But they might nevertheless contribute partially towards strengthening the growth of one mode relative to another, as well as affecting the kinematics of the gaseous component.


1996 ◽  
Vol 157 ◽  
pp. 253-255
Author(s):  
Wim van Driel ◽  
Pieter Mulder ◽  
Françoise Combes

AbstractWe studied the ringed RSab(r)-type spiral NGC 4736, which has a probably slightly oval disk and a very small bar. We mapped the galaxy in the HI and Hα spectral lines and we obtained long-slit optical spectra. These data were modeled using a 2-D gas dynamical code. The 2-D potential used is axisymmetric in the inner and outer regions and oval (b/a=0.8) at intermediate radii only. The oval component rotates at a pattern speed of 40 km s–1 kpc–1, close to the observed value. Inner and outer rings, like those observed, form at the inner and outer Lindblad resonances, though they co-exist only during a limited time interval in the simulations. The morphology and kinematics of the inner ring and spiral structure as observed in neutral and ionized hydrogen can be well understood in terms of gas dynamical simulations, given the form of the (stellar) potential. What remains to be explained is the origin of the nonaxisymmetric features in the mass distribution defining the potential.


2021 ◽  
Vol 502 (4) ◽  
pp. 4708-4722
Author(s):  
L Garma-Oehmichen ◽  
L Martinez-Medina ◽  
H Hernández-Toledo ◽  
I Puerari

ABSTRACT Stellar bars and spiral arms coexist and co-evolve in most disc galaxies in the local Universe. However, the physical nature of this interaction remains a matter of debate. In this work, we present a set of numerical simulations based on isolated galactic models aimed to explore how the bar properties affect the induced spiral structure. We cover a large combination of bar properties, including the bar length, axial ratio, mass, and rotation rate. We use three galactic models describing galaxies with rising, flat, and declining rotation curves. We found that the pitch angle best correlates with the bar pattern speed and the spiral amplitude with the bar quadrupole moment. Our results suggest that galaxies with declining rotation curves are the most efficient forming grand design spiral structure, evidenced by spirals with larger amplitude and pitch angle. We also test the effects of the velocity ellipsoid in a subset of simulations. We found that as we increase the radial anisotropy, spirals increase their pitch angle but become less coherent with smaller amplitude.


1987 ◽  
Vol 117 ◽  
pp. 280-280
Author(s):  
C. S. Frenk

A flat universe dominated by cold dark matter (CDM) is an attractive arena for the formation of galaxies and large scale structure. Current upper limits on anisotropies of the cosmic microwave background and the standard theory of primordial nucleosynthesis are both compatible with such a universe. Furthermore a flat CDM model in which galaxy formation is biased towards high density regions provides a good match to the observed distribution of galaxies on Megaparsec scales. In collaboration with M. Davis, G. Efstathiou and S.D.M. White, we have carried out a high resolution N-body simulation which shows that this model can also account for the abundance and characteristic properties of galactic halos. The initial conditions for this simulation were based on the results of our previous work which gave both the scaling and overall normalisation of the initial CDM fluctuation spectrum appropriate to the biased galaxy formation model. We simulated a cubic region of present size 14 Mpc (H0 = 50km/s/Mpc) from a redshift of 6 to the present day, with a resolution of 2kpc initially and 14 kpc at the end. We found that by a redshift of 2.5 about 20 clumps with circular speeds exceeding 100 km/s had collapsed near high peaks of the initial linear density field. Between Z = 2.5 and the present most of them remained isolated and accreted extensive outer halos, while others merged into larger systems. The rotation curves of the final smooth systems were impressively flat at large radii resembling the measured rotation curves of spiral galaxies. Furthermore, the abundance of clumps with circular velocities larger than 150 km/s was about the same as the abundance of galaxies brighter than M33 expected in a volume the size of our simulation. Significant transfer of angular momentum to surrounding material occurred as large subclumps merged. Most of this angular momentum was originally invested in the orbital motions of the subclumps. As a result, the central regions of merged objects showed little rotation.


2007 ◽  
Vol 3 (S245) ◽  
pp. 151-160 ◽  
Author(s):  
Francoise Combes

AbstractThe gas component plays a major role in the dynamics of spiral galaxies, because of its dissipative character, and its ability to exchange angular momentum with stars in the disk. Due to its small velocity dispersion, it triggers gravitational instabilities, and the corresponding non-axisymmetric patterns produce gravity torques, which mediate these angular momentum exchanges. When a srong bar pattern develops with the same pattern speed all over the disk, only gas inside corotation can flow towards the center. But strong bars are not long lived in presence of gas, and multiple-speed spiral patterns can develop between bar phases, and help the galaxy to accrete external gas flowing from cosmic filaments. The gas is then intermittently driven to the galaxy center, to form nuclear starbursts and fuel an active nucleus. The various time-scales of these gaseous flows are described.


2006 ◽  
Vol 5 (4) ◽  
pp. 325-326 ◽  
Author(s):  
M. Sundin

One of the criteria for the concept of a galactic habitable zone (GHZ) is that the pattern speed of the stars in the GHZ should be close to the pattern speed of the spiral arms. Another criteria is that the stars in it should have a high enough metallicity. In a barred galaxy, the GHZ will be more complicated to define since the bar can change stellar orbits. Many disc galaxies, including the Milky Way, are barred galaxies. The stars in the bar move in a number of fairly complicated orbits. However, the bar will also influence the orbits of stars in the whole galaxy. Stars passing close to the bar can either gain or lose angular momentum, due to a positive or negative torque by the bar. Some stars will therefore be captured by the bar while some stars eventually may reach the escape velocity from the galaxy. The bar will hence be able to relocate stars, and stars with low or high metallicity could be found far away from their original orbits. The ordinary evolution of a bar is to grow in length out to the co-rotation radius for the pattern speed of the bar. As the galaxy ages, and the bar grows in length, the bar will influence a larger part of the galaxy. The effect of moving stars inwards or outwards is greatest just outside the bar, and this region can eventually lose a high percentage of the stars.


1985 ◽  
Vol 106 ◽  
pp. 545-546
Author(s):  
Chi Yuan

A relatively minor oval distortion in the central region of the Galaxy, turning at a representative angular pattern speed, can excite outgoing waves at the outer Lindblad resonance of that pattern speed. Associated with the density crest of these waves is fast-expanding gas flow. The physical basis of this phenomenon can be understood through a linear analysis. However, to explain the observed expanding velocity in the “3-kpc arm”, the non-linear theory must be used. In our calculations an oval distortion turning at 118 km s-1 kpc-1 with a perturbation of 10% of the mean gravitational field at the outer Lindblad resonance (located at 3 kpc in the present case) can generate an outgoing velocity of 53 km s-1 at the first density crest of the wave (located at 3.6 kpc).


1996 ◽  
Vol 157 ◽  
pp. 504-515
Author(s):  
Konrad Kuijken

AbstractEvidence from a variety of sources points towards the existence of a bar in the central few kpc of the Galaxy. The measurements roughly agree on the direction of the bar major axis, but other parameters (axis ratio, size, pattern speed) are still poorly determined. Current dynamical models are limited by the quality of hydro simulations, the degeneracy of stellar orbit models, stellar-kinematic data and the significant lopsidedness of the central kpc. Microlensing promises new constraints on the mass distribution in the bulge/bar region.


1996 ◽  
Vol 157 ◽  
pp. 309-320 ◽  
Author(s):  
E. Athanassoula

AbstractI use N-body simulations to follow the evolution of bars in both isolated and interacting disk galaxies. The pattern speeds of bars evolving in isolated galaxies decline gradually with time, due to transfer of angular momentum from the bar to other components in the galaxy. Both the form and amount of this decline depend on the model used. The fate of a bar in an interacting disk galaxy depends on the mass, central concentration and orbit of the perturber. The pattern speed, form and amplitude of the bar may change, the bar can become off-centered, or, more drastically, it can disappear altogether. Finally I propose a scenario for the evolution of NGC 7217, which could, if proven correct, explain the formation of the rings in that galaxy and also, at least qualitatively, the existence of a retrograde population.


2019 ◽  
Vol 632 ◽  
pp. A107 ◽  
Author(s):  
G. Monari ◽  
B. Famaey ◽  
A. Siebert ◽  
O. Bienaymé ◽  
R. Ibata ◽  
...  

The second data release of the Gaia mission has revealed, in stellar velocity and action space, multiple ridges, the exact origin of which is still debated. Recently, we demonstrated that a large Galactic bar with pattern speed 39 km s−1 kpc−1 creates most of the observed ridges. Among these ridges, the Hercules moving group would then be associated with orbits trapped at the co-rotation resonance of the bar. Here we show that a distinctive prediction of such a model is that the angular momentum of Hercules at the Sun’s radius must significantly decrease with increasing Galactocentric azimuth (i.e. when getting closer to the major axis of the bar). We show that this dependence of the angular momentum of trapped orbits on the azimuth on the other hand does not happen close to the outer Lindblad resonance of a faster bar, unless the orbital distribution is still far from phase-mixed, namely for a bar perturbation younger than ∼2 Gyr. Using Gaia DR2 and Bayesian distances from the StarHorse code, and tracing the average Galactocentric radial velocity as a function of angular momentum and azimuth, we show that the Hercules angular momentum changes significantly with azimuth as expected for the co-rotation resonance of a dynamically old large bar.


Sign in / Sign up

Export Citation Format

Share Document