scholarly journals Tracing Hercules in Galactic azimuth with Gaia DR2

2019 ◽  
Vol 632 ◽  
pp. A107 ◽  
Author(s):  
G. Monari ◽  
B. Famaey ◽  
A. Siebert ◽  
O. Bienaymé ◽  
R. Ibata ◽  
...  

The second data release of the Gaia mission has revealed, in stellar velocity and action space, multiple ridges, the exact origin of which is still debated. Recently, we demonstrated that a large Galactic bar with pattern speed 39 km s−1 kpc−1 creates most of the observed ridges. Among these ridges, the Hercules moving group would then be associated with orbits trapped at the co-rotation resonance of the bar. Here we show that a distinctive prediction of such a model is that the angular momentum of Hercules at the Sun’s radius must significantly decrease with increasing Galactocentric azimuth (i.e. when getting closer to the major axis of the bar). We show that this dependence of the angular momentum of trapped orbits on the azimuth on the other hand does not happen close to the outer Lindblad resonance of a faster bar, unless the orbital distribution is still far from phase-mixed, namely for a bar perturbation younger than ∼2 Gyr. Using Gaia DR2 and Bayesian distances from the StarHorse code, and tracing the average Galactocentric radial velocity as a function of angular momentum and azimuth, we show that the Hercules angular momentum changes significantly with azimuth as expected for the co-rotation resonance of a dynamically old large bar.

1979 ◽  
Vol 84 ◽  
pp. 157-158
Author(s):  
D. Lynden-Bell

By considering the interaction of a single stellar orbit with a weak cos 2Φ potential it is shown that in the central regions of galaxies with slowly rising rotation curves, the elongations of the orbits will align along any potential valley and oscillate about it. This effect is more pronounced for elongated orbits. In such regions any pair of orbits will naturally align under their mutual gravity and so a bar will form. The gravity of this bar will drive a spiral structure in the outer parts of the galaxy where differential rotation is too strong to allow the orbits to be caught by the bar. The spiral structure carries a torque which slowly drains angular momentum from the bar, gradually making its outline more eccentric and slowing its pattern speed. In the outer parts of the bar only the more eccentric orbits align with the potential valley; the rounder ones form a ring or lens about the bar. As the pattern speed slows down, the corotation resonance and outer Lindblad resonance, which receive the angular momentun, move outwards. The evolution of the system is eventually slowed down by the weakness of these outer resonances where the material is rather sparse.


2020 ◽  
Vol 500 (2) ◽  
pp. 2645-2665
Author(s):  
Wilma H Trick ◽  
Francesca Fragkoudi ◽  
Jason A S Hunt ◽  
J Ted Mackereth ◽  
Simon D M White

ABSTRACT Action space synthesizes the orbital information of stars and is well suited to analyse the rich kinematic substructure of the disc in the second Gaia data release's radial velocity sample. We revisit the strong perturbation induced in the Milky Way disc by an m = 2 bar, using test particle simulations and the actions (JR, Lz, Jz) estimated in an axisymmetric potential. These make three useful diagnostics cleanly visible. (1) We use the well-known characteristic flip from outward to inward motion at the outer Lindblad resonance (OLR; l = +1, m = 2), which occurs along the axisymmetric resonance line (ARL) in (Lz, JR), to identify in the Gaia action data three candidates for the bar’s OLR and pattern speed Ωbar: 1.85Ω0, 1.20Ω0, and 1.63Ω0 (with ∼0.1Ω0 systematic uncertainty). The Gaia data is therefore consistent with both slow and fast bar models in the literature, but disagrees with recent measurements of ∼1.45Ω0. (2) For the first time, we demonstrate that bar resonances – especially the OLR – cause a gradient in vertical action 〈Jz〉 with Lz around the ARL via ‘Jz-sorting’ of stars. This could contribute to the observed coupling of 〈vR〉 and 〈|vz|〉 in the Galactic disc. (3) We confirm prior results that the behaviour of resonant orbits is well approximated by scattering and oscillation in (Lz, JR) along a slope ΔJR/ΔLz = l/m centred on the l:m ARL. Overall, we demonstrate that axisymmetrically estimated actions are a powerful diagnostic tool even in non-axisymmetric systems.


2019 ◽  
Vol 490 (4) ◽  
pp. 5414-5423 ◽  
Author(s):  
Jennifer K S Friske ◽  
Ralph Schönrich

ABSTRACT We present a newly found wave-like pattern in mean Galactocentric radial velocity ${\overline{U}_\mathrm{ g}}$ versus guiding centre radius Rg or angular momentum Lz of stars in the RV subsample of Gaia DR2. The short-wave pattern has a wavelength of order $1.2 \, {\rm kpc}$ in Rg or $285 \, {\rm kpc}\, {\rm km}\, {\rm s}^{-1}$ in Lz. The pattern shows only weak changes with Galactocentric radius R and little change in strength in particular with the vertical energy Ez of the stars or the distance to the Galactic plane |z|. The pattern is to first order symmetric around the plane, i.e. has no significant odd terms in z. There is a weak phase shift with the pattern moving towards slightly lower Lz (i.e. trailing) with |z| and Ez. However, we observe a highly significant phase shift in Galactic azimuth ϕ, which is different for different peaks. The peak around $L_{z}\sim 2100 \, {\rm kpc}\, {\rm km}\, {\rm s}^{-1}$ only shows a weak change with ϕ, while the rest of the pattern shows a clearly detectable shift of $\text{d} L_{z}/\text{d} \phi = (200 \pm 22) \, {\rm kpc}\, {\rm km}\, {\rm s}^{-1}\, {\rm rad}^{-1}$. If we consider all peaks to belong to the same pattern, this would suggest a wavenumber m = 4. We further find that the wave-like pattern in Ug appears to be related to the ${\overline{W}}$ versus Lz pattern detected in Gaia DR1. A comparison of the ${\overline{U}_\mathrm{ g}}\!-\!L_{z}$ wave pattern with changes of ${\overline{U}_\mathrm{ g}}$ versus R, which have been previously discussed, suggests that the latter can be understood as just the ${\overline{U}_\mathrm{ g}}\!-\!L_{z}$ pattern washed out by blurring (i.e. orbital excursions around their guiding centre) of disc stars.


2020 ◽  
Vol 500 (1) ◽  
pp. 397-409
Author(s):  
Jan Rybizki ◽  
Hans-Walter Rix ◽  
Markus Demleitner ◽  
Coryn A L Bailer-Jones ◽  
William J Cooper

ABSTRACT The Gaia Data Release 2 (DR2) radial velocity sample (GDR2RVS), which provides six-dimensional phase-space information on 7.2 million stars, is of great value for inferring properties of the Milky Way. Yet a quantitative and accurate modelling of this sample is hindered without knowledge and inclusion of a well-characterized selection function. Here we derive the selection function through estimates of the internal completeness, i.e. the ratio of GDR2RVS sources compared to all Gaia DR2 sources (GDR2all). We show that this selection function or ‘completeness’ depends on basic observables, in particular the apparent magnitude GRVS and colour G − GRP, but also on the surrounding source density and on sky position, where the completeness exhibits distinct small-scale structure. We identify a region of magnitude and colour that has high completeness, providing an approximate but simple way of implementing the selection function. For a more rigorous and detailed description we provide python code to query our selection function, as well as tools and adql queries that produce custom selection functions with additional quality cuts.


1999 ◽  
Vol 170 ◽  
pp. 347-353 ◽  
Author(s):  
A.A. Tokovinin

AbstractA radial velocity survey of the components of visual multiple stars has been done since 1994 with the correlation radial velocity spectrometer. About 50 spectroscopic sub-systems have been discovered, and a summary of the 30 published orbits is given. Difficulties of measuring the radial velocities of multiple stars are discussed and illustrated by 2 examples. New discoveries will lead to a better understanding of the formation of multiple stellar systems. Close and wide sub-systems can not be considered as a result of independent random combination, but are related by common origin. Almost all close binaries with periods less than 6 days possibly have more distant components which assisted in the formation of close pairs by taking away their angular momentum. On the other hand, among the distant visual tertiary companions the frequency of sub-systems with periods under 100 days is about 3 times higher than for field G dwarfs.


Author(s):  
Wilma H Trick

Abstract The Milky Way disk exhibits intricate orbit substructure of still-debated dynamical origin. The angle variables (θφ, θR)—which are conjugates to the actions (Lz, JR), and describe a star’s location along its orbit—are a powerful diagnostic to identify l:m resonances via the orbit shape relation ΔθR/Δθφ = −m/l. In the past, angle signatures have been hidden by survey selection effects (SEs). Using test particle simulations of a barred galaxy, we demonstrate that Gaia should allow us to identify the Galactic bar’s Outer Lindblad Resonance (l = +1, m = 2, OLR) in angle space. We investigate strategies to overcome SEs. In the angle data of the Gaia DR2 RVS sample, we independently identify four candidates for the OLR and therefore for the pattern speed Ωbar. The strongest candidate, Ωbar ∼ 1.4Ω0, positions the OLR above the ‘Sirius’ moving group, agrees with measurements from the Galactic center, and might be supported by higher-order resonances around the ‘Hercules/Horn’. But it misses the classic orbit orientation flip, as discussed in the companion study on actions. The candidate Ωbar ∼ 1.2Ω0 was also suggested by the action-based study, has the OLR at the ‘Hat’, is consistent with slow bar models, but still affected by SEs. Weaker candidates are Ωbar = 1.6 and 1.74Ω0. In addition, we show that the stellar angles do not support the ‘Hercules/Horn’ being created by the OLR of a fast bar. We conclude that—to resolve if ‘Sirius’ or ‘Hat’ are related to the bar’s OLR—more complex dynamical explanations and more extended data with well-behaved SEs are required.


1998 ◽  
Vol 11 (1) ◽  
pp. 574-574
Author(s):  
A.E. Gómez ◽  
S. Grenier ◽  
S. Udry ◽  
M. Haywood ◽  
V. Sabas ◽  
...  

Using Hipparcos parallaxes and proper motions together with radial velocity data and individual ages estimated from isochones, the velocity ellipsoid has been determined as a function of age. On the basis of the available kinematic data two different samples were considered: a first one (7789 stars) for which only tangential velocities were calculated and a second one containing 3104 stars with available U, V and W velocity components and total velocities ≤ 65 km.s-1. The main conclusions are: -Mixing is not complete at about 0.8-1 Gyr. -The shape of the velocity ellipsoid changes with time getting rounder from σu/σv/σ-w = 1/0.63/0.42 ± 0.04 at about 1 Gyr to1/0.7/0.62 ±0.04 at 4-5 Gyr. -The age-velocity-dispersion relation (from the sample with kinematical selection) rises to a maximum, thereafter remaining roughly constant; there is no dynamically significant evolution of the disk after about 4-5 Gyr. -Among the stars with solar metallicities and log(age) > 9.8 two groups are identified: one has typical thin disk characteristics, the other is older than 10 Gyr and lags the LSR at about 40 km.s-1 . -The variation of the tangential velocity with age(without selection on the tangential velocity) shows a discontinuity at about 10 Gyr, which may be attributed to stars typically of the thick disk populations for ages > 10 Gyr.


2011 ◽  
Vol 339 ◽  
pp. 624-629
Author(s):  
Lian Cheng Ren ◽  
Zheng Liang ◽  
Jiang Meng ◽  
Lin Yang ◽  
Jia Lin Tian

On the base of numerical simulation and theoretical analysis, the flow field of a conventional single-tangential-inlet Hydrocyclone and a newly put forward axial-symmetry double-tangential-inlet hydrocyclone were contrasted. The study shows that the inlet structure of the Hydrocylone has a great influence on the radial velocity of the flow field in the hydrocyclone and that the radial velocity in the hydrocyclone with single-tangential-inlet is not symmetry about the axis of the hydrocyclone; and on the other hand the radial velocity in the hydrocyclone with axial-symmetry double-tangential-inlet is symmetry about the axis of the hydrocyclone. The magnitude of the radial velocity of the flow in the hydrocyclone with single-tangential-inlet is greater than that in the hydrocyclone with axial-symmetry double-tangential-inlet hydrocyclone, which means the hydrocyclone with axial-symmetry double-tangential-inlet has greater capability than the rival one with single-tangential inlet. The symmetry about the axis of the hydrocyclone of the radial velocity means the radial velocities in the place where the radio is the same are constant, which means the hydrocyclone has a great separation efficiency. The conclusion is that changing the conventional hydrocyclone into the one with axial-symmetry double-tangential-inlet structure can offer greater separation capability and efficiency.


Author(s):  
Luis Acedo

In this paper, we revisit a modified version of the classical Whitehead's theory of gravity in which all possible bilinear forms are considered to define the corresponding metric. Although, this is a linear theory that fails to give accurate results for the most sophisticated predictions of general relativity, such as gravity waves, it can still provide a convenient framework to analyze some new phenomena in the Solar System. In particular, recent development in the accurate tracking of spacecraft and the ephemerides of planetary positions have revealed certain anomalies in relation with our standard paradigm for celestial mechanics. Among them the so-called flyby anomaly and the anomalous increase of the astronomical unit play a prominent role. In the first case the total energy of the spacecraft changes during the flyby and a secular variation of the semi-major axis of the planetary orbits is found in the second anomaly. For this to happen it seems that a net energy and angular momentum transfer is taken place among the orbiting and the central body. We evaluate the total transfer per revolution for a planet orbiting the Sun in order to predict the astronomical unit anomaly in the context of Whitehead's theory. This could lead to a more deeply founded hypothesis for an extended gravity model.


Author(s):  
G. M. Seabroke ◽  
C. Fabricius ◽  
D. Teyssier ◽  
P. Sartoretti ◽  
D. Katz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document