scholarly journals Kinematics of Molecules at the Galactic Centre

1974 ◽  
Vol 60 ◽  
pp. 521-535 ◽  
Author(s):  
B. J. Robinson

Dense gas clouds containing OH, CO, NH3 and H2CO are found in the inner part of the H1 nuclear disk. The molecular spectral lines allow direct observations of the kinematics of the gas near the galactic centre. Strong absorption of the thermal continuum sources by OH and H2CO shows that much of the gas on the near side of the centre can be located in a massive ‘ring’ expanding at 130 km s-1 which may have originated close to the nucleus about 106yr ago. Observations of CO emission from beyond the centre show that the far side of the ‘ring’ is expanding at a lower velocity, less than 90 km s-1. Observations of CO and NH3 emission with positive velocities for l < 360° are needed to establish whether the ‘ring’ is a continuous structure.OH and H2CO are also observed to be falling towards the centre. There is no agreement as to the location of this infalling matter.The nuclear regions of the Galaxy are compared with those of NGC 253, particularly in regard to expansional velocities, IR and radio emission, and OH absorption.

1977 ◽  
Vol 45 ◽  
pp. 119-120
Author(s):  
R. D. Davies ◽  
R. J. Cohen

An investigation of the central regions of the Galaxy has been made with an angular resolution of ~10 arcmin with the radio telescopes at Jodrell Bank using the spectral lines of HI (λ21 cm), OH (λ18 cm) and H2CO (λ6 cm). Observations of radio recombination lines in the range (λ21 to 125 cm) have also been taken. These data taken together provide information on the velocity field and gas distribution in the galactic centre region. A continuing programme of spectral line observations of the galactic centre is being pursued at Jodrell Bank.


2019 ◽  
Vol 79 (12) ◽  
Author(s):  
Jan Schee ◽  
Zdeněk Stuchlík

AbstractConsidering the regular Bardeen black hole spacetimes, we test the observational effects of the general relativistic solutions coupled to non-linear electrodynamics (NED) by studying the photon motion in the effective geometry governed by the spacetime geometry and the NED Lagrangian. We focus our attention to the observationally important case of profiled spectral lines generated by rings radiating in a fixed frequency and orbiting the black hole along circular geodesics of the Bardeen spacetime. Such profiled spectral lines are observed in active galactic nuclei and in microquasars, giving sufficient data for the test of regular black holes. We expect that such radiating rings could arise around the Galaxy central supermassive black hole SgrA*, and the related profiled spectral lines could give important additional information to those obtained by direct observations due to the Event Horizon (GRAVITY) Telescope. We demonstrate that the profiled spectral lines of the radiating rings predict strong signatures of the NED effects on the photon motion – namely the frequency shift to the red edge of the spectrum, and narrowing of the profile, by more than one order in comparison with the case of the profiles generated purely by the spacetime geometry, for all values of the magnetic charge and the inclination angle of the observer. The specific flux is substantially suppressed and for extended Keplerian disks even the shape of the profiled line is significantly modified due to the NED effect.


1967 ◽  
Vol 31 ◽  
pp. 239-251 ◽  
Author(s):  
F. J. Kerr

A review is given of information on the galactic-centre region obtained from recent observations of the 21-cm line from neutral hydrogen, the 18-cm group of OH lines, a hydrogen recombination line at 6 cm wavelength, and the continuum emission from ionized hydrogen.Both inward and outward motions are important in this region, in addition to rotation. Several types of observation indicate the presence of material in features inclined to the galactic plane. The relationship between the H and OH concentrations is not yet clear, but a rough picture of the central region can be proposed.


2021 ◽  
Vol 503 (1) ◽  
pp. 594-602
Author(s):  
R Schiavi ◽  
R Capuzzo-Dolcetta ◽  
I Y Georgiev ◽  
M Arca-Sedda ◽  
A Mastrobuono-Battisti

ABSTRACT We use direct N-body simulations to explore some possible scenarios for the future evolution of two massive clusters observed towards the centre of NGC 4654, a spiral galaxy with mass similar to that of the Milky Way. Using archival HST data, we obtain the photometric masses of the two clusters, M = 3 × 105 M⊙ and M = 1.7 × 106 M⊙, their half-light radii, Reff ∼ 4 pc and Reff ∼ 6 pc, and their projected distances from the photometric centre of the galaxy (both &lt;22 pc). The knowledge of the structure and separation of these two clusters (∼24 pc) provides a unique view for studying the dynamics of a galactic central zone hosting massive clusters. Varying some of the unknown cluster orbital parameters, we carry out several N-body simulations showing that the future evolution of these clusters will inevitably result in their merger. We find that, mainly depending on the shape of their relative orbit, they will merge into the galactic centre in less than 82 Myr. In addition to the tidal interaction, a proper consideration of the dynamical friction braking would shorten the merging times up to few Myr. We also investigate the possibility to form a massive nuclear star cluster (NSC) in the centre of the galaxy by this process. Our analysis suggests that for low-eccentricity orbits, and relatively long merger times, the final merged cluster is spherical in shape, with an effective radius of few parsecs and a mass within the effective radius of the order of $10^5\, \mathrm{M_{\odot }}$. Because the central density of such a cluster is higher than that of the host galaxy, it is likely that this merger remnant could be the likely embryo of a future NSC.


2019 ◽  
Vol 15 (S356) ◽  
pp. 375-375
Author(s):  
Sarah White

AbstractLow-frequency radio emission allows powerful active galactic nuclei (AGN) to be selected in a way that is unaffected by dust obscuration and orientation of the jet axis. It also reveals past activity (e.g. radio lobes) that may not be evident at higher frequencies. Currently, there are too few “radio-loud” galaxies for robust studies in terms of redshift-evolution and/or environment. Hence our use of new observations from the Murchison Widefield Array (the SKA-Low precursor), over the southern sky, to construct the GLEAM 4-Jy Sample (1,860 sources at S151MHz > 4 Jy). This sample is dominated by AGN and is 10 times larger than the heavily relied-upon 3CRR sample (173 sources at S178MHz > 10 Jy) of the northern hemisphere. In order to understand how AGN influence their surroundings and the way galaxies evolve, we first need to correctly identify the galaxy hosting the radio emission. This has now been completed for the GLEAM 4-Jy Sample – through repeated visual inspection and extensive checks against the literature – forming a valuable, legacy dataset for investigating relativistic jets and their interplay with the environment.


2020 ◽  
Vol 500 (2) ◽  
pp. 2278-2288
Author(s):  
Claudio Grimaldi

ABSTRACT Probabilistic arguments about the existence of technological life beyond Earth traditionally refer to the Drake equation to draw possible estimates of the number of technologically advanced civilizations releasing, either intentionally or not, electromagnetic emissions in the Milky Way. Here, we introduce other indicators than Drake’s number ND to develop a demography of artificial emissions populating the Galaxy. We focus on three main categories of statistically independent signals (isotropic, narrow beams, and rotating beacons) to calculate the average number NG of emission processes present in the Galaxy and the average number of them crossing Earth, $\bar{k}$, which is a quantity amenable to statistical estimation from direct observations. We show that $\bar{k}$ coincides with ND only for isotropic emissions, while $\bar{k}$ can be orders of magnitude smaller than ND in the case of highly directional signals. We further show that while ND gives the number of emissions being released at the present time, NG considers also the signals from no longer active emitters but whose emissions still occupy the Galaxy. We find that as long as the average longevity of the emissions is shorter than about 105 yr, NG is fully determined by the rate of emissions alone, in contrast to ND and $\bar{k}$ which depend also on the emission longevity. Finally, using analytic formulas of NG, ND, and $\bar{k}$ determined for each type of emission processes here considered, we provide a comprehensive overview of the values these quantities can possibly achieve as functions of the emission birthrates, longevities, and directionality.


2018 ◽  
Vol 609 ◽  
pp. A75 ◽  
Author(s):  
N. Falstad ◽  
S. Aalto ◽  
J. G. Mangum ◽  
F. Costagliola ◽  
J. S. Gallagher ◽  
...  

Context. Feedback in the form of mass outflows driven by star formation or active galactic nuclei is a key component of galaxy evolution. The luminous infrared galaxy Zw 049.057 harbours a compact obscured nucleus with a possible far-infrared signature of outflowing molecular gas. Due to the high optical depths at far-infrared wavelengths, however, the interpretation of the outflow signature is uncertain. At millimeter and radio wavelengths, the radiation is better able to penetrate the large columns of gas and dust responsible for the obscuration. Aims. We aim to investigate the molecular gas distribution and kinematics in the nucleus of Zw 049.057 in order to confirm and locate the molecular outflow, with the ultimate goal to understand how the nuclear activity affects the host galaxy. Methods. We used high angular resolution observations from the Submillimeter Array (SMA), the Atacama Large Millimeter/submillimeter Array (ALMA), and the Karl G. Jansky Very Large Array (VLA) to image the CO J = 2–1 and J = 6–5 emission, the 690 GHz continuum, the radio centimeter continuum, and absorptions by rotationally excited OH. Results. The CO line profiles exhibit wings extending ~ 300 km s-1 beyond the systemic velocity. At centimeter wavelengths, we find a compact (~ 40 pc) continuum component in the nucleus, with weaker emission extending several 100 pc approximately along the major and minor axes of the galaxy. In the OH absorption lines toward the compact continuum, wings extending to a similar velocity as for the CO are only seen on the blue side of the profile. The weak centimeter continuum emission along the minor axis is aligned with a highly collimated, jet-like dust feature previously seen in near-infrared images of the galaxy. Comparison of the apparent optical depths in the OH lines indicate that the excitation conditions in Zw 049.057 differ from those within other OH megamaser galaxies. Conclusions. We interpret the wings in the spectral lines as signatures of a nuclear molecular outflow. A relation between this outflow and the minor axis radio feature is possible, although further studies are required to investigate this possible association and understand the connection between the outflow and the nuclear activity. Finally, we suggest that the differing OH excitation conditions are further evidence that Zw 049.057 is in a transition phase between megamaser and kilomaser activity.


2021 ◽  
Vol 502 (1) ◽  
pp. 1246-1252
Author(s):  
M Zoccali ◽  
E Valenti ◽  
F Surot ◽  
O A Gonzalez ◽  
A Renzini ◽  
...  

ABSTRACT We analyse the near-infrared colour–magnitude diagram of a field including the giant molecular cloud G0.253+0.016 (a.k.a. The Brick) observed at high spatial resolution, with HAWK-I@VLT. The distribution of red clump stars in a line of sight crossing the cloud, compared with that in a direction just beside it, and not crossing it, allow us to measure the distance of the cloud from the Sun to be 7.20, with a statistical uncertainty of ±0.16 and a systematic error of ±0.20 kpc. This is significantly closer than what is generally assumed, i.e. that the cloud belongs to the near side of the central molecular zone, at 60 pc from the Galactic centre. This assumption was based on dynamical models of the central molecular zone, observationally constrained uniquely by the radial velocity of this and other clouds. Determining the true position of the Brick cloud is relevant because this is the densest cloud of the Galaxy not showing any ongoing star formation. This puts the cloud off by one order of magnitude from the Kennicutt–Schmidt relation between the density of the dense gas and the star formation rate. Several explanations have been proposed for this absence of star formation, most of them based on the dynamical evolution of this and other clouds, within the Galactic centre region. Our result emphasizes the need to include constraints coming from stellar observations in the interpretation of our Galaxy’s central molecular zone.


2018 ◽  
Vol 616 ◽  
pp. L9 ◽  
Author(s):  
G. Monari ◽  
B. Famaey ◽  
I. Carrillo ◽  
T. Piffl ◽  
M. Steinmetz ◽  
...  

We measure the escape speed curve of the Milky Way based on the analysis of the velocity distribution of ~2850 counter-rotating halo stars from the Gaia Data Release 2. The distances were estimated through the StarHorse code, and only stars with distance errors smaller than 10% were used in the study. The escape speed curve is measured at Galactocentric radii ranging from ~5 kpc to ~10.5 kpc. The local Galactic escape at the Sun’s position is estimated to be ve(r⊙) = 580 ± 63 km s−1, and it rises towards the Galactic centre. Defined as the minimum speed required to reach three virial radii, our estimate of the escape speed as a function of radius implies for a Navarro–Frenk–White profile and local circular velocity of 240 km s−1 a dark matter mass M200 = 1.28−0.50+0.68 × 1012 M⊙ and a high concentration c200 = 11.09−1.79+2.94. Assuming the mass-concentration relation of ΛCDM, we obtain M200 = 1.55−0.51+0.64 × 1012 M⊙ and c200 = 7.93−0.27+0.33 for a local circular velocity of 228 km s−1.


Nature ◽  
1974 ◽  
Vol 247 (5441) ◽  
pp. 444-446 ◽  
Author(s):  
P. J. EDWARDS ◽  
R. B. HURST ◽  
M. P. C. MCQUEEN

Sign in / Sign up

Export Citation Format

Share Document