scholarly journals The Distribution of Molecular Clouds in Spiral Galaxies

1983 ◽  
Vol 100 ◽  
pp. 35-42
Author(s):  
P. M. Solomon

The use of millimeter wave CO emission as a tracer of molecular hydrogen in the Galaxy (Scoville and Solomon 1975) showed that most of the H2 unlike HI is concentrated in the inner part of the Galaxy in a “ring” between 4–8 kpc and in the inner 1 kpc. Subsequent surveys (Gordon and Burton 1976, Cohen and Thaddeus 1977, Solomon etal. 1979) confirmed this picture with more extensive data. The molecular interstellar medium was shown to be dominated by Giant Molecular Clouds with individual masses between 105 and 3·106M⊙ (Solomon etal. 1979, Solomon and Sanders 1980). The GMC's confined to a layer with a half thickness of only 60 pc are an important component of the galactic disk, and the most massive objects in the galaxy. They affect the dynamics of the disk by contributing significantly to the surface density and through their individual gravitational interactions with stars.

1991 ◽  
Vol 9 (2) ◽  
pp. 200-202 ◽  
Author(s):  
Guoxuan Song

AbstractMolecular hydrogen in spiral galaxies is distributed in clumps, i.e., molecular clouds, which have mass between 103M⊙ and 106M⊙ and a mass spectrum of n(m) ∝ m−1.6. Molecular clouds with masses greater than 105M⊙, are called giant molecular clouds (GMCs). It is generally accepted that GMCs are formed by the coalescence of molecular clouds through their collision. This process is studied by both numerical simulation and numerical integration. The observation with high resolution identified a great number of CO emission cores in galaxies. Based on this result, the aggregation or clustering formation of GMCs is numerically simulated. In the process of either coalescence or clustering, spiral perturbation plays an important role.


1979 ◽  
Vol 84 ◽  
pp. 277-283
Author(s):  
N. Z. Scoville ◽  
P. M. Solomon ◽  
D. B. Sanders

Observations of CO emission at ℓ=0 to 70°, |b| ≤ 1° are analyzed to give a map of the molecular cloud distribution in the galaxy as viewed from the galactic pole. From the fact that this distribution shows no obvious spiral pattern we conclude that the giant molecular clouds sampled in the CO line are situated in both arm and interarm regions and they must last more than 108 years. A similar age estimate is deduced from the large mass fraction of H2 in the interstellar medium in the interior of the galaxy. An implication of this longevity is that the great masses of these clouds may be accumulated through cloud-cloud collisions of originally smaller clouds.


1979 ◽  
Vol 84 ◽  
pp. 35-52 ◽  
Author(s):  
P. M. Solomon ◽  
D. B. Sanders ◽  
N. Z. Scoville

Millimeter wave observations of emission from the CO molecule have become, over the past eight years, the dominant method for determining the physical properties of dense interstellar clouds, composed primarily of molecular hydrogen and for exploring the structure and kinematics of the galactic disk. In this paper we briefly review the CO survey results in the literature (Section 2) and then present new results (Section 3-7) of an extensive 13CO and 12CO survey of the galactic distribution, size, mass and age of molecular clouds. The interpretation of this survey leads to a new picture of the interstellar medium dominated by very massive stable long-lived clouds which we refer to as Giant Molecular Clouds. We find that Giant Molecular Clouds (GMC's) with M = 105–3 × 106M⊙ are a major constituent of the galactic disk, the dominant component of the interstellar medium in the galaxy interior to the sun and the most massive objects in the galaxy. We find that the interstellar medium and star formation are dominated by massive gravitationally bound clouds in which stars and associations are forming but at a very low rate in comparison to the free fall time. The galactic distribution of the molecules as traced by CO emission is interpreted as the distribution of GMC's. As the most massive objects in the galaxy they are also basic to the dynamics of the disk.


1984 ◽  
Vol 108 ◽  
pp. 399-400
Author(s):  
M. Rubio ◽  
R. Cohen ◽  
J. Montani

The dwarf Magellanic irregular galaxies apparently have a very low molecular content compared to the Milky Way. In the LMC, molecular clouds are fairly common, but the ratio of molecular to atomic gas is at least 5 times lower than in the Galaxy (Cohen et al. 1984). Elmegreen et al. (1980) searched for CO in 6 dwarf galaxies and failed to detect any emission even though their sensitivity was adequate to detect galactic giant molecular clouds placed at the distance of these galaxies. Israel (1984) observed the J=2→1 transition of CO at 15 points in the Small Magellanic Cloud and detected CO emission from five of them, but at a level two to six times lower than typical galactic values.


1987 ◽  
Vol 115 ◽  
pp. 557-586 ◽  
Author(s):  
Judith S. Young

Observations of the molecular cloud distributions in spiral galaxies are reviewed. For the luminous, relatively face-on Sc galaxies, the azimuthally averaged CO distributions are centrally peaked, with H2surface densities which decrease as a function of radius. For the Sb and Sa galaxies, the CO distributions exhibit central CO holes up to 5 kpc across in a significant fraction of the galaxies studied. In galaxies with this CO morphology, the central hole is coincident with the nuclear bulge of the galaxy. Additionally, the radial distributions of CO and13CO emission are similar in 10 Sb and Sc galaxies.


1996 ◽  
Vol 169 ◽  
pp. 521-522
Author(s):  
E. Griv

Until recently, only collisionless models have been investigated in the kinetic treatment of stellar disk stability (e.g., Fridman and Polyachenko [1984]). This is due to the fact that the frequency of ordinary binary stellar gravitational (elastic) encounters in the Galaxy is much smaller than the variation of the gravitational field for the process being studied. However, in the pioneering paper Spitzer and Schwarzschild (1951) proposed a different kind of encounter: interaction of stars with gas clouds of the interstellar medium having a mass of rougly 106M⊙. In recent years this hypothesis was partially confirmed by observations: it was discovered in the Galaxy a few thousand giant molecular clouds of mass Mc ≥ 105M⊙. Other evidence of dynamical relaxation of the star–cloud disk in the solar neighborhood was found by Grivnev and Fridman (1990); the time of relaxation was estimated equal to τ = (2 – 4) × 109 years. Hence the study of collisional star–cloud system is not only of academic interest – on the time span t ≥ 109 years an actual galaxy may be a collisional ensemble of stars and clouds.


2006 ◽  
Vol 2 (S237) ◽  
pp. 331-335
Author(s):  
Yu Gao

AbstractActive star formation (SF) is tightly related to the dense molecular gas in the giant molecular clouds' dense cores. Our HCN (measure of the dense molecular gas) survey in 65 galaxies (including 10 ultraluminous galaxies) reveals a tight linear correlation between HCN and IR (SF rate) luminosities, whereas the correlation between IR and CO (measure of the total molecular gas) luminosities is nonlinear. This suggests that the global SF rate depends more intimately upon the amount of dense molecular gas than the total molecular gas content. This linear relationship extends to both the dense cores in the Galaxy and the hyperluminous extreme starbursts at high-redshift. Therefore, the global SF law in dense gas appears to be linear all the way from dense cores to extreme starbursts, spanning over nine orders of magnitude in IR luminosity.


2018 ◽  
Vol 615 ◽  
pp. A122 ◽  
Author(s):  
S. König ◽  
S. Aalto ◽  
S. Muller ◽  
J. S. Gallagher III ◽  
R. J. Beswick ◽  
...  

Context. Minor mergers are important processes contributing significantly to how galaxies evolve across the age of the Universe. Their impact on the growth of supermassive black holes and star formation is profound – about half of the star formation activity in the local Universe is the result of minor mergers. Aims. The detailed study of dense molecular gas in galaxies provides an important test of the validity of the relation between star formation rate and HCN luminosity on different galactic scales – from whole galaxies to giant molecular clouds in their molecular gas-rich centers. Methods. We use observations of HCN and HCO+ 1−0 with NOEMA and of CO3−2 with the SMA to study the properties of the dense molecular gas in the Medusa merger (NGC 4194) at 1′′ resolution. In particular, we compare the distribution of these dense gas tracers with CO2−1 high-resolution maps in the Medusa merger. To characterize gas properties, we calculate the brightness temperature ratios between the three tracers and use them in conjunction with a non-local thermodynamic equilibrium (non-LTE) radiative line transfer model. Results. The gas represented by HCN and HCO+ 1−0, and CO3−2 does not occupy the same structures as the less dense gas associated with the lower-J CO emission. Interestingly, the only emission from dense gas is detected in a 200 pc region within the “Eye of the Medusa”, an asymmetric 500 pc off-nuclear concentration of molecular gas. Surprisingly, no HCN or HCO+ is detected for the extended starburst of the Medusa merger. Additionally, there are only small amounts of HCN or HCO+ associated with the active galactic nucleus. The CO3−2/2−1 brightness temperature ratio inside “the Eye” is ~2.5 – the highest ratio found so far – implying optically thin CO emission. The CO2−1/HCN 1−0 (~9.8) and CO2−1/HCO+ 1−0 (~7.9) ratios show that the dense gas filling factor must be relatively high in the central region, consistent with the elevated CO3−1/2−1 ratio. Conclusions. The line ratios reveal an extreme, fragmented molecular cloud population inside the Eye with large bulk temperatures (T > 300 K) and high gas densities (n(H2) > 104 cm-3). This is very different from the cool, self-gravitating structures of giant molecular clouds normally found in the disks of galaxies. The Eye of the Medusa is found at an interface between a large-scale minor axis inflow and the central region of the Medusa. Hence, the extreme conditions inside the Eye may be the result of the radiative and mechanical feedback from a deeply embedded, young and massive super star cluster formed due to the gas pile-up at the intersection. Alternatively, shocks from the inflowing gas entering the central region of the Medusa may be strong enough to shock and fragment the gas. For both scenarios, however, it appears that the HCN and HCO+ dense gas tracers are not probing star formation, but instead a post-starburst and/or shocked ISM that is too hot and fragmented to form newstars. Thus, caution is advised in taking the detection of emission from dense gas tracers as evidence of ongoing or imminent star formation.


1996 ◽  
Vol 173 ◽  
pp. 175-176
Author(s):  
K.C. Freeman

From their rotation curves, most spiral galaxies appear to have massive dark coronas. The inferred masses of these dark coronas are typically 5 to 10 times the mass of the underlying stellar component. I will review the evidence that our Galaxy also has a dark corona. Our position in the galactic disk makes it difficult to measure the galactic rotation curve beyond about 20 kpc from the galactic center. However it does allow several other indicators of the total galactic mass out to very large distances. It seems clear that the Galaxy does indeed have a massive dark corona. The data indicate that the enclosed mass within radius R increases like M(R) ≈ R(kpc) × 1010M⊙, out to a radius of more than 100 kpc. The total galactic mass is at least 12 × 1011M⊙.


1980 ◽  
Vol 87 ◽  
pp. 397-404 ◽  
Author(s):  
Arno A. Penzias

While an examination of the available data reveals some seemingly contradictory results, a general framework having the following outlines can be put forward:1. With the exception of the two galactic center sources SgrA and SgrB, the relative isotopic abundances exhibited by the giant molecular clouds in our Galaxy exhibit few, if any, significant variations from the values obtained by averaging the data from all these sources.2. The 13C/12C and 14N/15N abundance ratios are ∼130% and ∼150%, respectively, of their terrestrial values throughout the galactic plane and somewhat higher, ∼300%, near the galactic center.3. The 16O/18O and 17O/18O abundance ratios are ∼130% and ∼160%, respectively, of their terrestrial values throughout the Galaxy, although the former may be somewhat lower near the galactic center.4. The S and Si isotopes have generally terrestrial abundances.


Sign in / Sign up

Export Citation Format

Share Document