scholarly journals Massive Contact Binary Systems

1991 ◽  
Vol 143 ◽  
pp. 207-212
Author(s):  
Kam-Ching Leung

In recent years very massive single stars have been found to be upward of 90 M⊙. Massive contact binary systems have been found among the early-type systems, but their masses are far less than those reported for single stars. The most massive component found is about 60 M⊙.It is generally believed that no late-type very massive stars have been detected (Humphreys and Davidson). This may be due to the large amount of mass loss from stellar wind. Recently, several extremely long-period late-type binary systems have been found to be contact systems. Two systems, UU Cnc and 5 Cet, have their primary components with masses exceeding 40 M⊙, and K spectra. This result tends to suggest that close or interacting binary stars may be able to preserve the mass loss from stellar wind within the binary systems.

1979 ◽  
Vol 83 ◽  
pp. 383-399
Author(s):  
Janusz Ziółkowski

Three situations involving mass loss from binary systems are discussed. (1) Non-conservative mass exchange in semi-detached binaries. No quantitative estimate of this mechanism is possible at present. (2) Common envelope binaries. There are both theoretical and observational indications that this phase of evolution happens to many systems, even to some that are not very close initially (orbital periods ~ years). (3) Stellar winds in binaries. Observational evidence suggests that stellar winds from components of close binaries (especially semi-detached) are significantly stronger than from single stars at the same location in the H-R diagram. Theoretical arguments indicate that in some cases stellar wind may stabilize the component of a binary against the Roche lobe overflow. In some cases there is weak evidence of an anisotropy in the stellar wind.


1980 ◽  
Vol 5 ◽  
pp. 541-547
Author(s):  
H. F. Henrichs

A number of massive stars of early type is found in X-ray binary systems. The catalog of Bradt et al. (1979) contains 21 sources optically identified with massive stars ranging in spectral type from 06 to B5 out of which 13 are (nearly) unevolved stars and 8 are supergiants. Single stars of this type generally show moderate to strong stellar winds. The X-rays in these binaries originate from accretion onto a compact companion (we restrict the discussion to this type of X-rays).We consider the compact star as a probe traveling through the stellar wind. This probe enables us to derive useful information about the mass outflow of massive stars.After presenting the basic data we derive an upper limit to mass loss rates of unevolved early type stars by studying X-ray pulsars. Next we consider theoretical predictions concerning the influence of X-rays on the stellar wind and compare these with the observations. Finally, using new data from IUE, we draw some conclusions about mass loss rates and velocity laws as derived from X-ray binaries.


1986 ◽  
Vol 7 ◽  
pp. 217-218
Author(s):  
Zhong-Yuen Li ◽  
Kam-Ching Leung

It has been well known for some time that some close binary stars have a semidetached or contact configuration. Many late-type systems ----- W WMa systems ----- are known to have these configurations. Their dimensions are typically of solar mass to fractions of solar masses, and solar radius to fractions of solar radii. Early-type systems with semidetached and contact configurations have been found in recent years. Their typical dimensions are from several solar masses to tens of solar masses, and from several solar radii to tens of solar radii. Generally, both late and early-type close systems are located in the vicinity of ZAMS and TAMS in an H-R diagram. They are believed to be the result of case A or B mass exchange of close binary evolution. Some of us have been wondering why we do not find semidetached or contact systems with much larger dimensions consisting of supergiant stars?


1988 ◽  
Vol 108 ◽  
pp. 213-214
Author(s):  
Albert P. Linnell

W Ursae Majoris stars can be understood as contact binary stars with a common envelope (Lucy 1968). They subdivide into two types: The A-type are earlier inspectral class than about F5, are believed to have radiative envelopes, and associate primary (deeper) eclipse minimum with transit eclipse. The W-type have spectral classes later than F5, are believed to have convectlve envelopes, and associate primary minimum with occultation eclipse. Controversy has surrounded the explanation of W-type light curves.Four distinct models have been introduced to describe the envelopes or photospheres of W UMa stars. (1) The Rucinski hot secondary model directly explains W-type light curves on a postulational basis. Since 70%-90% of the emitted radiation from the secondary (less massive) component is believed to reach the secondary via circulation currents from the primary, there is an apparent thermodynamic mystery why the secondary should be hotter. (2) The Lucy Thermal Relaxation Oscillation (TRO) model argues that the secondary component is perpetually out of thermal equilibrium and that the components are in contact only during part of a given TRO cycle. During contact the photosphere is supposed to be barotropic. In this case primary minimum always associates with transit eclipse, in disagreement with observation for W-type systems. (3) The Shu et al. thermal discontinuity (DSC) model also argues for a barotropic photosphere but differs from Lucy on the gravity brightening exponent. The changes are insufficient to produce W-type light curves, (4) Webbink (1977), and, separately, Nariai (1976), argue for a baroclinic envelope. If the baroclinicity extends to the photosphere there is a possibility that W-type l i g h t curves could be explained. In particular, the Webbink scenario produces a hot secondary.


1981 ◽  
Vol 59 ◽  
pp. 487-489
Author(s):  
H. Drechsel ◽  
H.D. Radecke ◽  
J. Rahe ◽  
G. Rupprecht ◽  
W. Wargau ◽  
...  

SV Cen is a well known early-type contact binary. The less massive component is a slightly evolved B1 star. The secondary is of spectral type B4 III. The period of the system is P = 1.6585 days. SV Cen shows with Ṗ/P = -2 10-5 yr-1 one of the largest known period decreases. We carried out ground-based photoelectric and spectroscopic (coudé) observations at ESO, and high dispersion UV observations at VILSPA, with the aima) to derive new orbital parameters of SV Cenb) to determine further epochs of minima (i.e. to study the period variations)c) to look for possible mass loss indicators in the ultraviolet range.


1979 ◽  
Vol 83 ◽  
pp. 409-414
Author(s):  
D. Vanbeveren ◽  
J.P. De Grève ◽  
C. de Loore ◽  
E.L. van Dessel

It is generally accepted that massive (and thus luminous) stars lose mass by stellar wind, driven by radiation force (Lucy and Solomon, 1970; Castor et al. 1975). For the components of massive binary systems, rotational and gravitational effects may act together with the radiation force so as to increase the mass loss rate. Our intention here is to discuss the influence of a stellar wind mass loss on the evolution of massive close binaries. During the Roche lobe overflow phase, mass and angular momentum can leave the system. Possible reasons for mass loss from the system are for example the expansion of the companion due to accretion of the material lost by the mass losing star (Kippenhahn and Meyer-Hofmeister, 1977) or the fact that due to the influence of the radiation force in luminous stars, mass will be lost over the whole surface of the star and not any longer through a possible Lagrangian point as in the case of classical Roche lobe overflow (Vanbeveren, 1978). We have therefore investigated the influence of both processes on binary evolution. Our results are applied to 5 massive X-ray binaries with a possible implication for the existence of massive Wolf Rayet stars with a very close invisible compact companion. A more extended version of this talk is published in Astronomy and Astrophysics (Vanbeveren et al. 1978; Vanbeveren and De Grève, 1978). Their results will be briefly reviewed.


2018 ◽  
Vol 616 ◽  
pp. A38 ◽  
Author(s):  
P. F. L. Maxted ◽  
R. J. Hutcheon

Context. The Kepler K2 mission now makes it possible to find and study a wider variety of eclipsing binary stars than has been possible to-date, particularly long-period systems with narrow eclipses. Aims. Our aim is to characterise eclipsing binary stars observed by the Kepler K2 mission with orbital periods longer than P ≈ 5.5 days. Methods. The ellc binary star model has been used to determine the geometry of eclipsing binary systems in Kepler K2 campaigns 1, 2 and 3. The nature of the stars in each binary is estimated by comparison to stellar evolution tracks in the effective temperature – mean stellar density plane. Results. 43 eclipsing binary systems have been identified and 40 of these are characterised in some detail. The majority of these systems are found to be late-type dwarf and sub-giant stars with masses in the range 0.6–1.4 solar masses. We identify two eclipsing binaries containing red giant stars, including one bright system with total eclipses that is ideal for detailed follow-up observations. The bright B3V-type star HD 142883 is found to be an eclipsing binary in a triple star system. We observe a series of frequencies at large multiples of the orbital frequency in BW Aqr that we tentatively identify as tidally induced pulsations in this well-studied eccentric binary system. We find that the faint eclipsing binary EPIC 201160323 shows rapid apsidal motion. Rotational modulation signals are observed in 13 eclipsing systems, the majority of which are found to rotate non-synchronously with their orbits. Conclusions. The K2 mission is a rich source of data that can be used to find long period eclipsing binary stars. These data combined with follow-up observations can be used to precisely measure the masses and radii of stars for which such fundamental data are currently lacking, e.g., sub-giant stars and slowly-rotating low-mass stars.


2020 ◽  
Vol 493 (3) ◽  
pp. 4045-4057 ◽  
Author(s):  
T Jayasinghe ◽  
K Z Stanek ◽  
C S Kochanek ◽  
B J Shappee ◽  
M H Pinsonneault ◽  
...  

ABSTRACT We characterize ${\sim } 71\, 200$ W Ursae Majoris (UMa) type (EW) contact binaries, including ${\sim } 12\, 600$ new discoveries, using All-Sky Automated Survey for SuperNovae (ASAN-SN)V-band all-sky light curves along with archival data from Gaia, 2MASS, AllWISE, LAMOST, GALAH, RAVE, and APOGEE. There is a clean break in the EW period–luminosity relation at $\rm \log (\it P/{\rm d})\,{\simeq }\,{\rm -0.30}$, separating the longer period, early-type EW binaries from the shorter period, late-type systems. The two populations are even more cleanly separated in the space of period and effective temperature, by $T_{\rm eff}=6710\,{\rm K}-1760\,{\rm K}\, \log (P/0.5\,{\rm d})$. Early-type and late-type EW binaries follow opposite trends in Teff with orbital period. For longer periods, early-type EW binaries are cooler, while late-type systems are hotter. We derive period–luminosity relationships in the WJK, V, Gaia DR2 G, J, H, Ks, and W1 bands for the late-type and early-type EW binaries separated by both period and effective temperature, and by period alone. The dichotomy of contact binaries is almost certainly related to the Kraft break and the related changes in envelope structure, winds, and angular momentum loss.


2019 ◽  
Vol 28 (06) ◽  
pp. 1950044 ◽  
Author(s):  
V. V. Sargsyan ◽  
H. Lenske ◽  
G. G. Adamian ◽  
N. V. Antonenko

The evolution of contact binary star systems in mass asymmetry (transfer) coordinate is considered. The orbital period changes are explained by an evolution in mass asymmetry towards the symmetry (symmetrization of binary system). It is predicted that decreasing and increasing orbital periods are related, respectively, with the nonoverlapping and overlapping stage of the binary star during its symmetrization. A huge amount of energy [Formula: see text][Formula: see text]J is converted from the potential energy into internal energy of the stars during the symmetrization. As shown, the merger of stars in the binary systems, including KIC 9832227, is energetically an unfavorable process. The sensitivity of the calculated results to the values of total mass and orbital angular momentum is analyzed.


1993 ◽  
Vol 138 ◽  
pp. 507-516 ◽  
Author(s):  
Jeffrey L. Linsky

AbstractConventional wisdom holds that early-type and late-type stars have very different outer atmospheres, because the early-type stars lack deep convective zones. I argue that the magnetic chemically peculiar (CP) stars hotter than about spectral type A2 display many of the activity phenomena seen in the most active late-type stars. In particular, many CP stars are luminous nonthermal radio and coronal x-ray sources like the RS CVn systems. A wind-fed magnetosphere model has been proposed to explain both the nonthermal radio and the x-ray emission. In this model the stellar wind plays the role of a mechanical energy source analogous to the role played by convection in the active late-type stars.


Sign in / Sign up

Export Citation Format

Share Document