scholarly journals Detection of New Ammonia Sources

1980 ◽  
Vol 87 ◽  
pp. 83-84
Author(s):  
G.H. Macdonald ◽  
A.T. Brown ◽  
L.T. Little ◽  
D.N. Matheson ◽  
M. Felli

Ammonia is a favoured molecule for the study of molecular clouds since several important parameters of the cloud can be deduced from simple observations of the J,K=1,1 and 2,2 inversion doublet transitions and the hyperfine structure in the (1,1) line. With the additional knowledge of the kinetic temperature Tk from observations of CO, for example, it is possible to compute the excitation temperature of the (1,1) line (T11), the rotational temperature between the (1,1) and (2,2) levels (T21), the molecular hydrogen density n(H2) and ammonia column density N(NH3) (see, for example, Martin and Barrett, 1978).

1991 ◽  
Vol 148 ◽  
pp. 429-430
Author(s):  
Monica Rubio

We summarize the results of observations of molecular gas from the Small Magellanic Cloud (SMC) made with low angular resolution (8'.8). These observations show that the CO emission is weak (TA˜ 0.04K) and that the CO luminosities of the Clouds are low compared to those of Galactic molecular clouds. The factor to convert the CO luminosity to molecular hydrogen column density for the SMC is ˜20 and three times larger than those derived for clouds in our Galaxy and in the Large Magellanic Cloud (LMC) respectively. In addition, we present preliminary results of high resolution (40″) observations of SMC molecular clouds made with the SEST telescope.


1983 ◽  
Vol 100 ◽  
pp. 45-46
Author(s):  
Neal J. Evans ◽  
S. R. Federman ◽  
F. Combes ◽  
E. Falgarone

The kinetic temperatures in molecular clouds are usually considered to range upward from about 10 K (e.g., Dickman 1975). These temperatures are generally measured by observing the CO J = 1 → 0 transition and assuming that this line is optically thick and thermalized. This assumption also underlies estimates of the total mass and distribution of molecular material in our galaxy based on CO surveys. Because a significant amount of molecular material could in principle be missed by galactic CO surveys, a search was undertaken for “ultra-cold” molecular gas, by which is meant an excitation temperature, Tex < 5 K. No evidence was found for a large amount of such material (Evans, Rubin, and Zuckerman 1980), but many clouds with Tex between 5 and 10 K were found. To determine if this low Tex is due to low kinetic temperature, low density, or low CO abundance, we have undertaken observations of a large number of clouds in the J = 2 → 1 CO line and the J = 1 → 0 13CO and CO lines. These observations will be analyzed to determine the properties of these clouds.


1987 ◽  
Vol 120 ◽  
pp. 185-186
Author(s):  
H. R. Dickel ◽  
W. M. Goss ◽  
A. H. Rots

Formaldehyde absorption has been observed with the Very Large Array in both the 6 cm and 2 cm transitions towards a number of ultracompact HII regions which are embedded in the dense cores of molecular clouds. Such data have been compared with the results of radiative transfer calculations to derive the distributions of the molecular hydrogen density and of the abundance of formaldehyde relative to molecular hydrogen. Results are presented for the sources DR 21 and W 3(OH).


Author(s):  
O. L. Ryabukhina ◽  
◽  
M. S. Kirsanova ◽  

We study the molecular filament WB 673 which is located at a distance of 1.8 kpc in the giant molecular cloud G174 + 2.5. Observations of ammonia radiolines NH3 (1,1), (2,2) and (3,3) were carried out in 2019 at the Effelsberg observatory (Germany). The parameters of the lines were determined, maps of the integrated intensities of ammonia in dense clumps WB 668, WB 673, S233-IR and G173.57+2.43 were obtained. The column density of ammonia and the kinetic temperature of the gas were obtained. An analysis of the hyperfine structure anomalies of the NH3 (1,1) lines was carried out.


2020 ◽  
Vol 72 (4) ◽  
Author(s):  
Toshihiro Omodaka ◽  
Takumi Nagayama ◽  
Kazuhito Dobashi ◽  
James O Chibueze ◽  
Akifumi Yamabi ◽  
...  

Abstract We measured the trigonometric parallax of the H2O maser source associated with the L 1482 molecular filament hosting the most massive young star, LkHα 101, in the California molecular cloud. The measured parallax is 1.879 ± 0.096 mas, corresponding to the distance of 532 ± 28 pc. This parallax is consistent with that of the nearby star cluster LkHα 101, which was recently measured with Gaia DR2. We found that the L 1482 molecular filament and the LkHα 101 cluster are located at the same distance within 3 ± 30 pc. We observed the southern parts of L 1482 molecular clouds including the H2O maser source, which is adjacent to LkHα 101, using the Nobeyama 45 m telescope in the J = 1–0 transitions of both 12CO and 13CO. The peak intensity of the 12CO line revealed the high excitation temperature region (60–70 K) due to heating by UV radiation from LkHα 101. We derived the column density of these molecular clouds assuming local thermodynamic equilibrium (LTE) from the 13CO emission. Using Dendrogam, we searched for small-scale, dense structures (cores) and identified 337 cores in the 13CO data. Gravitationally bound cores with a virial mass to LTE mass ratio ≤1.5 and young stars are concentrated in the high excitation temperature region. The column density in the warm region is five to six times larger than that of the surrounding colder molecular region. This suggests that the warm region has been compressed by a high-pressure wave and successive radiation-driven star formation is in progress in this warm region. In the cold molecular cloud to the north of the warm region, the cores are likely gravitationally unbound, which may be the reason why star formation is not active there.


2017 ◽  
Vol 13 (S332) ◽  
pp. 81-87
Author(s):  
Aya E. Higuchi ◽  
Aki Sato ◽  
Takashi Tsukagoshi ◽  
Nami Sakai ◽  
Kazunari Iwasaki ◽  
...  

AbstractWe have detected [C I] 3P1–3P0 emissions in the gaseous debris disks of 49 Ceti and β Pictoris with the 10 m telescope of the Atacama Submillimeter Telescope Experiment, which is the first detection of such emissions. The line profiles of [C I] are found to resemble those of CO(J=3–2) observed with the same telescope and the Atacama Large Millimeter/submillimeter Array. This result suggests that atomic carbon (C) coexists with CO in the debris disks, and is likely formed by the photodissociation of CO. Assuming an optically thin [C I] emission with the excitation temperature ranging from 30 to 100 K, the column density of C is evaluated to be (2.2 ± 0.2) × 1017 and (2.5 ± 0.7) × 1016 cm−2 for 49 Ceti and β Pictoris, respectively. The C/CO column density ratio is thus derived to be 54 ± 19 and 69 ± 42 for 49 Ceti and β Pictoris, respectively. These ratios are higher than those of molecular clouds and diffuse clouds by an order of magnitude. The unusually high ratios of C to CO are likely attributed to a lack of H2 molecules needed to reproduce CO molecules efficiently from C. This result implies a small number of H2 molecules in the gas disk; i.e., there is an appreciable contribution of secondary gas from dust grains.


2020 ◽  
Vol 497 (2) ◽  
pp. 1521-1535
Author(s):  
Mitsunori Araki ◽  
Shuro Takano ◽  
Nobuhiko Kuze ◽  
Yoshiaki Minami ◽  
Takahiro Oyama ◽  
...  

ABSTRACT Molecules in diffuse and translucent clouds experience cooling as a result of radiation and less excitation from collisions. However, rotation around a molecular axis of acetonitrile, CH3CN, cannot be cooled by radiation, causing rotational populations to concentrate at the J = K levels. We aim to search for absorption lines of CH3CN having J = K level concentrations in diffuse and translucent clouds. The JK = 43–33 transition at 73.6 GHz was investigated toward Sgr B2(M) in the Galactic Centre region and other sources, using the Nobeyama 45-m telescope. Based on the absorption lines detected toward Sgr B2(M), a radiation temperature of 2.8 ± 0.5 K, kinetic temperature of 88 ± 29 K and column density of (1.35 ± 0.14) × 1014 cm−2 were derived for this molecule, revealing extremely concentrated J = K levels due to the lower excitation temperature and higher kinetic temperature. The absorption lines occurred at a velocity of 64 km s−1. The results confirm that CH3CN with J = K level concentrations exists in the envelope of Sgr B2(M).


2008 ◽  
Vol 4 (S251) ◽  
pp. 369-370
Author(s):  
S. Pilling ◽  
D. P. P. Andrade ◽  
A. C. F. Santos ◽  
H. M. Boechat-Roberty

AbstractWe present experimental results obtained from photoionization and photodissociation processes of abundant interstellar methanol (CH3OH) as an alternative route for the production of H3+ in dense clouds. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS) employing soft X-ray and time-of-flight mass spectrometry. Mass spectra were obtained using the photoelectron-photoion coincidence techniques. Absolute averaged cross sections for the production of H3+ due to molecular dissociation of methanol by soft X-rays (C1s edge) were determined. The H3+'s photoproduction rate and column density were been estimated adopting a typical soft X-ray luminosity inside dense molecular and the observed column density of methanol. Assuming a steady state scenario, the highest column density value for the photoproduced H3+ was about 1011 cm2, which gives the ratio photoproduced/observed of about 0.05%, as in the case of dense molecular cloud AFGL 2591. Despite the small value, this represent a new and alternative source of H3+ into dense molecular clouds and it is not been considered as yet in interstellar chemistry models.


2018 ◽  
Vol 609 ◽  
pp. A125 ◽  
Author(s):  
M. Wienen ◽  
F. Wyrowski ◽  
K. M. Menten ◽  
J. S. Urquhart ◽  
C. M. Walmsley ◽  
...  

Context. The initial conditions of molecular clumps in which high-mass stars form are poorly understood. In particular, a more detailed study of the earliest evolutionary phases is needed. The APEX Telescope Large Area Survey of the whole inner Galactic disk at 870 μm, ATLASGAL, has therefore been conducted to discover high-mass star-forming regions at different evolutionary phases. Aims. We derive properties such as velocities, rotational temperatures, column densities, and abundances of a large sample of southern ATLASGAL clumps in the fourth quadrant. Methods. Using the Parkes telescope, we observed the NH3 (1, 1) to (3, 3) inversion transitions towards 354 dust clumps detected by ATLASGAL within a Galactic longitude range between 300° and 359° and a latitude within ± 1.5°. For a subsample of 289 sources, the N2H+ (1–0) line was measured with the Mopra telescope. Results. We measured a median NH3 (1, 1) line width of ~ 2 km s-1, rotational temperatures from 12 to 28 K with a mean of 18 K, and source-averaged NH3 abundances from 1.6 × 10-6 to 10-8. For a subsample with detected NH3 (2, 2) hyperfine components, we found that the commonly used method to compute the (2, 2) optical depth from the (1, 1) optical depth and the (2, 2) to (1, 1) main beam brightness temperature ratio leads to an underestimation of the rotational temperature and column density. A larger median virial parameter of ~ 1 is determined using the broader N2H+ line width than is estimated from the NH3 line width of ~ 0.5 with a general trend of a decreasing virial parameter with increasing gas mass. We obtain a rising NH3 (1, 1)/N2H+ line-width ratio with increasing rotational temperature. Conclusions. A comparison of NH3 line parameters of ATLASGAL clumps to cores in nearby molecular clouds reveals smaller velocity dispersions in low-mass than high-mass star-forming regions and a warmer surrounding of ATLASGAL clumps than the surrounding of low-mass cores. The NH3 (1, 1) inversion transition of 49% of the sources shows hyperfine structure anomalies. The intensity ratio of the outer hyperfine structure lines with a median of 1.27 ± 0.03 and a standard deviation of 0.45 is significantly higher than 1, while the intensity ratios of the inner satellites with a median of 0.9 ± 0.02 and standard deviation of 0.3 and the sum of the inner and outer hyperfine components with a median of 1.06 ± 0.02 and standard deviation of 0.37 are closer to 1.


2013 ◽  
Vol 9 (S297) ◽  
pp. 378-380
Author(s):  
L. S. Bernstein ◽  
F. O. Clark ◽  
D. K. Lynch

AbstractWe propose that the diffuse interstellar bands (DIBs) arise from absorption lines of electronic transitions in molecular clusters primarily composed of a single molecule, atom, or ion (“seed”), embedded in a single-layer shell of H2 molecules (Bernstein et al. 2013). Less abundant variants of the cluster, including two seed molecules and/or a two-layer shell of H2 molecules may also occur. The lines are broadened, blended, and wavelength-shifted by interactions between the seed and surrounding H2 shell. We refer to these clusters as CHCs (Contaminated H2 Clusters). CHC spectroscopy matches the diversity of observed DIB spectral profiles, and provides good fits to several DIB profiles based on a rotational temperature of 10 K. CHCs arise from ~cm-sized, dirty H2 ice balls, called CHIMPs (Contaminated H2 Ice Macro-Particles), formed in cold, dense, Giant Molecular Clouds (GMCs), and later released into the interstellar medium (ISM) upon GMC disruption. Attractive interactions, arising from Van der Waals and ion-induced dipole potentials, between the seeds and H2 molecules enable CHIMPs to attain cm-sized dimensions. When an ultraviolet (UV) photon is absorbed in the outer layer of a CHIMP, it heats the icy matrix and expels CHCs into the ISM. While CHCs are quickly destroyed by absorbing UV photons, they are replenished by the slowly eroding CHIMPs. Since CHCs require UV photons for their release, they are most abundant at, but not limited to, the edges of UV-opaque molecular clouds, consistent with the observed, preferred location of DIBs. An inherent property of CHCs, which can be characterized as nanometer size, spinning, dipolar dust grains, is that they emit in the radio-frequency region. Thus, CHCs offer a natural explanation to the anomalous microwave emission (AME) feature in the ~10-100 GHz spectral region.


Sign in / Sign up

Export Citation Format

Share Document