scholarly journals Molecular gas in the Small Magellanic Cloud

1991 ◽  
Vol 148 ◽  
pp. 429-430
Author(s):  
Monica Rubio

We summarize the results of observations of molecular gas from the Small Magellanic Cloud (SMC) made with low angular resolution (8'.8). These observations show that the CO emission is weak (TA˜ 0.04K) and that the CO luminosities of the Clouds are low compared to those of Galactic molecular clouds. The factor to convert the CO luminosity to molecular hydrogen column density for the SMC is ˜20 and three times larger than those derived for clouds in our Galaxy and in the Large Magellanic Cloud (LMC) respectively. In addition, we present preliminary results of high resolution (40″) observations of SMC molecular clouds made with the SEST telescope.

1997 ◽  
Vol 166 ◽  
pp. 251-260 ◽  
Author(s):  
Edith Falgarone

AbstractRecent observations at high angular resolution of molecular clouds of low column density have revealed the presence of a conspicuous net of small scale filamentary structures, visible in the 12CO rotational lines only. In addition, the existence of unresolved structure at scales as small as ~ 200 AU in space and/or velocity space is inferred from the spectral properties of the 12CO and 13CO emission. The resolved structures are part of the hierarchy of structures observed in molecular gas in the Solar Neighborhood and appear as non self-gravitating elements confined by an ambient pressure P0/kB ~ 3 × 104cm−3 K. We show why these structures might have their origin in the intermittent structures of turbulence in which viscous dissipation is concentrated in space and time.


1987 ◽  
Vol 115 ◽  
pp. 145-146
Author(s):  
T. L. Wilson ◽  
E. Serabyn ◽  
C. Henkel ◽  
C. M. Walmsley

A fully sampled map of size ∼1′×3′ (R.A. Dec), centered on BN-KL has been made in the J = 1-0 line of 12C18O with 21″ angular resolution. The 12C18O emission is concentrated in a ← 40″ wide continuous strip running S to NE. Several maxima are superposed on the ridge, but none exceeds the average emission level by more than 40%. There is no intense peak of 12C18O J = 1-0 line emission centered on BN-KL, in contrast to maps of the dust emission. The dust and 12C18O results can be reconciled with a constant (CO/H2) ratio if there are variations in the kinetic temperature and column density of ∼50%. Peaks in both temperature and column density are then located near BN-KL, and 90″ to the south. From the estimated CO column density, about 10% of the carbon is in the form of CO. Near the BN-KL region, the 12C18O line profiles tend to become wider. These wider lines appear to be superposed on a weak, 18 km s−1 (FWHP) wide pedestal. In regions 40″ NE and 30″ S of BN-KL, the 12C18O lines have widths of less than 2 km s−1. Presumably, these are the locations of high density, quiescent molecular gas. The radial velocity of the CO emission increases from 6.5 km s−1 (at 90″ S) to 10.5 km s−1 (at 60″ NE) of BN-KL. Close to BN-KL, however, there is evidence that this trend is reversed.


1999 ◽  
Vol 190 ◽  
pp. 124-125
Author(s):  
M. Marx-Zimmer ◽  
F. Zimmer ◽  
U. Herbstmeier ◽  
J. M. Dickey

In the Large Magellanic Cloud (LMC) a large number of cool HI clouds have been detected with temperatures much lower than those found for atomic clouds in the Milky Way (Dickey et al. 1994; Mebold et al. 1997; Marx-Zimmer et al. 1998). Apparently, the population of cool HI clouds reaches kinetic gas temperatures down to as low as 10 or 20 K. These clouds may play an important role in the formation of stars in the LMC. We studied the association between the cool atomic gas and molecular gas in the LMC by 12CO(1–0) line observations in directions of cool HI clouds using the 15-m Swedish-ESO Submillimetre Telescope (SEST).


2019 ◽  
Vol 627 ◽  
pp. A15
Author(s):  
D. Paradis ◽  
C. Mény ◽  
M. Juvela ◽  
A. Noriega-Crespo ◽  
I. Ristorcelli

Context. Some Galactic molecular clouds show signs of dust evolution as compared to the diffuse interstellar medium, most of the time through indirect evidence such as color ratios, increased dust emissivity, or scattering (coreshine). These signs are not a feature of all Galactic clouds. Moreover, molecular clouds in the Large Magellanic Cloud (LMC) have been analyzed in a previous study based on Spitzer and IRIS data, at 4′ angular resolution, with the use of one single dust model, and did not show any signs of dust evolution. Aims. In this present analysis we investigate the dust properties associated with the different gas phases (including the ionized phase this time) of the LMC molecular clouds at 1′ angular resolution (four times greater than the previous analysis) and with a larger spectral coverage range thanks to Herschel data. We also ensure the robustness of our results in the framework of various dust models. Methods. We performed a decomposition of the dust emission in the infrared (from 3.6 to 500 μm) associated with the atomic, molecular, and ionized gas phases in the molecular clouds of the LMC. The resulting spectral energy distributions were fitted with four distinct dust models. We then analyzed the model parameters such as the intensity of the radiation field and the relative dust abundances, as well as the slope of the emission spectra at long wavelengths. Results. This work allows dust models to be compared with infrared data in various environments for the first time, which reveals important differences between the models at short wavelengths in terms of data fitting (mainly in the polycyclic aromatic hydrocarbon bands). In addition, this analysis points out distinct results according to the gas phases, such as dust composition directly affecting the dust temperature and the dust emissivity in the submillimeter and different dust emission in the near-infrared (NIR). Conclusions. We observe direct evidence of dust property evolution from the diffuse to the dense medium in a large sample of molecular clouds in the LMC. In addition, the differences in the dust component abundances between the gas phases could indicate different origins of grain formation. We also point out the presence of a NIR-continuum in all gas phases, with an enhancement in the ionized gas. We favor the hypothesis of an additional dust component as the carrier of this continuum.


2008 ◽  
Vol 4 (S256) ◽  
pp. 154-159
Author(s):  
Adam K. Leroy ◽  
Alberto D. Bolatto ◽  
Erik Rosolowsky ◽  
Snežana Stanimirović ◽  
Norikazu Mizuno ◽  
...  

AbstractWe compare the resolved properties of giant molecular clouds (GMCs) in the Small Magellanic Cloud (SMC) and other low mass galaxies to those in more massive spirals. When measured using CO line emission, differences among the various populations of GMCs are fairly small. We contrast this result with the view afforded by dust emission in the Small Magellanic Cloud. Comparing temperature-corrected dust opacity to the distribution of Hisuggests extended envelopes of CO-free H2, implying that CO traces only the highest density H2in the SMC. Including this CO-free H2, the gas depletion time, H2-to-Hiratio, and H2-to-stellar mass/light ratio in the SMC are all typical of those found in more massive irregular galaxies.


1984 ◽  
Vol 108 ◽  
pp. 399-400
Author(s):  
M. Rubio ◽  
R. Cohen ◽  
J. Montani

The dwarf Magellanic irregular galaxies apparently have a very low molecular content compared to the Milky Way. In the LMC, molecular clouds are fairly common, but the ratio of molecular to atomic gas is at least 5 times lower than in the Galaxy (Cohen et al. 1984). Elmegreen et al. (1980) searched for CO in 6 dwarf galaxies and failed to detect any emission even though their sensitivity was adequate to detect galactic giant molecular clouds placed at the distance of these galaxies. Israel (1984) observed the J=2→1 transition of CO at 15 points in the Small Magellanic Cloud and detected CO emission from five of them, but at a level two to six times lower than typical galactic values.


2018 ◽  
Vol 617 ◽  
pp. A54 ◽  
Author(s):  
H. Liszt ◽  
M. Gerin ◽  
I. Grenier

Context. More gas is inferred to be present in molecular cloud complexes than can be accounted for by H I and CO emission, a phenomenon known as dark neutral medium (DNM) or CO-dark gas for the molecular part. Aims. We aim to investigate whether molecular gas can be detected in Chamaeleon where gas column densities in the DNM were inferred and CO emission was not detected. Methods. We took λ3 mm absorption profiles of HCO+ and other molecules toward 13 background quasars across the Chamaeleon complex, only one of which had detectable CO emission. We derived the H2 column density assuming N(HCO+)/N(H2) = 3 × 10−9 as before. Results. With the possible exception of one weak continuum target, HCO+ absorption was detected in all directions, C2H in eight directions and HCN in four directions. The sightlines divide into two groups according to their DNM content, with one group of eight directions having N(DNM) ≳ 2 × 1020 cm−2 and another group of five directions having N(DNM) < 0.5 × 1020 cm−2. The groups have comparable mean N(H I) associated with Chamaeleon 6−7 × 1020 cm−2 and total hydrogen column density per unit reddening 6−7 × 1021 cm−2 mag−1. They differ, however, in having quite different mean reddening 0.33 vs. 0.18 mag, mean N(DNM) 3.3 vs. 0.14 × 1020 cm−2 and mean molecular column density 2N(H2) = 5.6 vs. 0.8 × 1020 cm−2. The gas at more positive velocities is enriched in molecules and DNM. Conclusions. Overall the quantity of H2 inferred from HCO+ can fully account for the previously inferred DNM along the sightlines studied here. H2 is concentrated in the high-DNM group, where the molecular fraction is 46% vs. 13% otherwise and 38% overall. Thus, neutral gas in the outskirts of the complex is mostly atomic but the DNM is mostly molecular. Saturation of the H I emission line profile may occur along three of the four sightlines having the largest DNM column densities, but there is no substantial reservoir of “dark” atomic or molecular gas that remains undetected as part of the inventory of dark neutral medium.


1991 ◽  
Vol 148 ◽  
pp. 415-420 ◽  
Author(s):  
R. S. Booth ◽  
Th. De Graauw

In this short review we describe recent new observations of millimetre transitions of molecules in selected regions of the Magellanic Clouds. The observations were made using the Swedish-ESO Submillimetre Telescope, SEST, (Booth et al. 1989), the relatively high resolution of which facilitates, for the first time, observations of individual giant molecular clouds in the Magellanic Clouds. We have mapped the distribution of the emission from the two lowest rotational transitions of 12CO and 13CO and hence have derived excitation conditions for the molecule. In addition, we have observed several well-known interstellar molecules in the same regions, thus doubling the number of known molecules in the Large Magellanic Cloud (LMC). The fact that all the observations have been made under controlled conditions with the same telescope enables a reasonable intercomparison of the molecular column densities. In particular, we are able to observe the relative abundances among the different isotopically substituted species of CO.


1991 ◽  
Vol 148 ◽  
pp. 205-206 ◽  
Author(s):  
A. Krabbe ◽  
J. Storey ◽  
V. Rotaciuc ◽  
S. Drapatz ◽  
R. Genzel

Images with subarcsec spatial resolution in the light of near-infrared atomic (Bry) and molecular hydrogen H2 (S(1) v=1-0) emission lines were obtained for some extended, pointlike objects in the Large Magellanic Cloud (LMC) for the first time. We used the Max-Planck-Institut für extraterrestrische Physik (MPE) near-infrared array spectrometer FAST (image scale 0.8”/pix, spectral resolving power 950) at the ESO/MPI 2.2m telescope, La Silla. We present some results on the 30-Dor complex and N159A5.


1991 ◽  
Vol 148 ◽  
pp. 15-23 ◽  
Author(s):  
B. E. Westerlund

A vast amount of observational data concerning the structure and kinematics of the Magellanic Clouds is now available. Many basic quantities (e.g. distances and geometry) are, however, not yet sufficiently well determined. Interactions between the Small Magellanic Cloud (SMC), the Large Magellanic Cloud (LMC) and our Galaxy have dominated the evolution of the Clouds, causing bursts of star formation which, together with stochastic self-propagating star formation, produced the observed structures. In the youngest generation in the LMC it is seen as an intricate pattern imitating a fragmented spiral structure. In the SMC much of the fragmentation is along the line of sight complicating the reconstruction of its history. The violent events in the past are also recognizable in complex velocity patterns which make the analysis of the kinematics of the Clouds difficult.


Sign in / Sign up

Export Citation Format

Share Document