scholarly journals Current Systems in Radio Jets

1985 ◽  
Vol 107 ◽  
pp. 433-437
Author(s):  
Jean A. Eilek

The structure of the magnetic field in radio jets is a topic of recent interest, especially due to the possibility that some high pressure jets are confined by a magnetic pinch. Several such jets have been found which cannot be confined by external cluster gas pressure, on which there are observational limits; nor can they be in free expansion, since they do not show evidence of adiabatic expansion losses. Recent radio interferometer observations of surface brightness and polarization allow the possibility of determining the magnetic field structure. In this paper I present some basic considerations of the current and field structure required if the observed jets are to be magnetically confined.

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1168
Author(s):  
Elena Belenkaya ◽  
Ivan Pensionerov

On 14 January 2008, the MESSENGER spacecraft, during its first flyby around Mercury, recorded the magnetic field structure, which was later called the “double magnetopause”. The role of sodium ions penetrating into the Hermean magnetosphere from the magnetosheath in generation of this structure has been discussed since then. The violation of the symmetry of the plasma parameters at the magnetopause is the cause of the magnetizing current generation. Here, we consider whether the change in the density of sodium ions on both sides of the Hermean magnetopause could be the cause of a wide diamagnetic current in the magnetosphere at its dawn-side boundary observed during the first MESSENGER flyby. In the present paper, we propose an analytical approach that made it possible to determine the magnetosheath Na+ density excess providing the best agreement between the calculation results and the observed magnetic field in the double magnetopause.


1987 ◽  
Vol 92 ◽  
pp. 82-83 ◽  
Author(s):  
C. T. Bolton ◽  
A. W. Fullerton ◽  
D. Bohlender ◽  
J. D. Landstreet ◽  
D. R. Gies

Over the past two years, we have obtained high resolution high signal/noise (S/N) spectra of the magnetic Be star σ Ori E at the Canada-France-Hawaii Telescope and McDonald Observatory. These spectra, which cover the spectral regions 399-417.5 and 440-458.5 nm and the Hα line and have typical S/N>200 and spectral resolution ≃0.02 nm, were obtained at a variety of rotational phases in order to study the magnetic field structure, the distribution of elements in the photosphere, and the effects of the magnetic field on the emission envelope. Our analysis of these spectra confirms, refines and extends the results obtained by Landstreet & Borra (1978), Groote & Hunger (1982 and references therein), and Nakajima (1985).The Hα emission is usually double-peaked, but it undergoes remarkable variations with the 1.19081 d rotational period of the star, which show that the emitting gas is localized into two regions which co-rotate with the star.


2010 ◽  
Vol 28 (9) ◽  
pp. 1795-1805 ◽  
Author(s):  
S. A. McLay ◽  
C. D. Beggan

Abstract. A physically-based technique for interpolating external magnetic field disturbances across large spatial areas can be achieved with the Spherical Elementary Current System (SECS) method using data from ground-based magnetic observatories. The SECS method represents complex electrical current systems as a simple set of equivalent currents placed at a specific height in the ionosphere. The magnetic field recorded at observatories can be used to invert for the electrical currents, which can subsequently be employed to interpolate or extrapolate the magnetic field across a large area. We show that, in addition to the ionospheric currents, inverting for induced subsurface current systems can result in strong improvements to the estimate of the interpolated magnetic field. We investigate the application of the SECS method at mid- to high geomagnetic latitudes using a series of observatory networks to test the performance of the external field interpolation over large distances. We demonstrate that relatively few observatories are required to produce an estimate that is better than either assuming no external field change or interpolation using latitudinal weighting of data from two other observatories.


1990 ◽  
Vol 140 ◽  
pp. 445-445
Author(s):  
H. Sol ◽  
G. Pelletier ◽  
E. Asseo

We propose a model for extragalactic radio jets in which two different flows of particles are taken into account, (i) a beam of relativistic electrons and positrons extracted from the funnel of accretion disc and responsible for the observed superluminal motion, (ii) a classical or mildly relativistic wind of electrons and protons coming out from all parts of the disc (Sol et al., 1989). Studying the mutual interaction of the two flows, we show that the configuration is not destroyed by the plasma-beam instability as long as the magnetic field, assumed longitudinal, is strong enough, with an electron gyrofrequency ωc = eB/mec greater than the ambient plasma frequency ωp = (4πnpe2)1/2 (Pelletier et al., 1988). When ωc < ωp, the relativistic beam loses its energy and its momentum mainly through the development of strong Langmuir turbulence in the wind, and disappears quietly after some relaxation zone where heating and entrainment of the wind occur. This emphasizes one aspect of the important role likely played by the magnetic field in the dynamics of extragalactic jets and provides one example in which the magnetic field, acting on the microscopic scale of an interaction, induces strong effects on large–scale structures. Detailed data on the closest known superluminal radio source 3C120 (Walker et al., 1987, 1988; Benson et al., 1988) allow a check on the likelihood of our model. Observational estimates of the variation along the jet of the magnetic field and of the ambient plasma density np suggest that the magnetic field reaches its critical value (corresponding to ωc = ωp) at a minimal distance of about 1.4 kpc from the central engine. This is amazingly close to the location of the 4′–radio knot, a “rather curious structure” described by Walker et al. (1987), which we interpret as the beam relaxation zone in the context of our two–flow model (Sol et al., 1989).


Sign in / Sign up

Export Citation Format

Share Document