scholarly journals 3.21. Atomic ISM in the nuclear starburst regions of M82 & NGC 253

1998 ◽  
Vol 184 ◽  
pp. 131-132
Author(s):  
M. S. Yun ◽  
P. T. P. Ho ◽  
K. Y. Lo

M82 (NGC 3034) is a nearby (D = 3.3 Mpc) “prototypical” starburst galaxy which emits most of its luminosity in the infrared (LIR = 3×1010L⊙, see Rieke et al. 1980). M82 is also a strong radio source 3C 231, with numerous compact knots which are thought to be young SNR's (Kronberg et al., 1981; Muxlow et al., 1994). Its strong 1.4 GHz radio continuum is extended over the entire 500 pc nuclear starburst region, and the HI absorption is easily mapped at 2″ (30 pc) resolution using the VLA. The resulting velocity integrated optical depth (τΔV) map can be converted to HI column density map if HI spin temperature (Tsp) is known.

2019 ◽  
Vol 631 ◽  
pp. A115
Author(s):  
Sambit Roychowdhury ◽  
Clive Dickinson ◽  
Ian W. A. Browne

Context. HI intensity mapping (IM) will be used to do precision cosmology, using many existing and upcoming radio observatories. It will measure the integrated HI 21 cm emission signal from “voxels” of the sky at different redshifts. The signal will be contaminated due to absorption, the largest component of which will be the flux absorbed by the HI emitting sources themselves from the potentially bright flux incident on them from background radio continuum sources. Aims. We, for the first time, provide a quantitative estimate of the magnitude of the absorbed flux compared to the emitted HI flux. The ratio of the two fluxes was calculated for various voxels placed at redshifts between 0.1 and 2.5. Methods. We used a cosmological sky simulation of the atomic HI emission line, and summed over the emitted and absorbed fluxes for all sources within voxels at different redshifts. In order to determine the absorbed flux, for each HI source the flux incident from background radio continuum sources was estimated by determining the numbers, sizes, and redshift distribution of radio continuum sources that lie behind it, based on existing observations and simulations. The amount of this incident flux that is absorbed by each HI source was calculated using a relation between integrated optical depth with HI column density determined using observations of damped Lyman-α systems (DLAs) and sub-DLAs. Results. We find that for the same co-moving volume of sky, the HI emission decreases quickly with increasing redshift, while the absorption varies much less with redshift and follows the redshift distribution of faint sources that dominate the number counts of radio continuum sources. This results in the fraction of absorption compared to emission to be negligible in the nearby Universe (up to a redshift of ∼0.5), increases to about 10% at a redshift of one, and continues to increase to about 30% up to a redshift of 2.5. These numbers can vary significantly due to the uncertainty on the exact form of the following relations: firstly, the number counts of radio continuum sources at sub-mJy flux densities; secondly, the relation between integrated optical depth and HI column density of HI sources; and thirdly, the redshift distribution of radio continuum sources up to the highest redshifts. Conclusions. Absorption of the flux incident from background radio continuum sources might become an important contaminant to HI IM signals beyond redshifts of 0.5. The impact of absorption needs to be quantified more accurately using inputs from upcoming deep surveys of radio continuum sources, H I absorption, and HI emission with the Square Kilometre Array and its precursors.


2020 ◽  
Vol 643 ◽  
pp. A174
Author(s):  
Mukul Mhaskey ◽  
Surajit Paul ◽  
Neeraj Gupta ◽  
Dipanjan Mukherjee ◽  
Gopal-Krishna

We report the detection of HI 21-cm absorption in a member of the rare and recently discovered class of compact radio sources: extremely inverted spectrum extragalactic radio sources (EISERS). The EISERS conceivably form a special subclass of the inverted spectrum radio galaxies since the spectral index of the optically thick part of the spectrum for these sources crosses the synchrotron self-absorption limit of α = +2.5 (S(ν) ∝ να). We searched for HI absorption in two EISERS using the recently upgraded Giant Metrewave Radio Telescope (uGMRT) and detected an absorption feature in one of them. The strong associated HI absorption detected against the source J1209−2032 (z = 0.4040) implies an optical depth of 0.178 ± 0.02, corresponding to an HI column density of 34.8 ± 2.9 × 1020 cm−2, for an assumed HI spin temperature of 100 K and covering factor of 1. This is among the highest known optical depth and HI column densities found for compact radio sources of peaked spectrum type and supports the free-free absorption model for the steeply inverted radio spectrum of this source. For the other source, J1549+5038 (z = 2.171), no HI absorption was detected in our observations.


Author(s):  
Miranda Yew ◽  
Miroslav D. Filipović ◽  
Quentin Roper ◽  
Jordan D. Collier ◽  
Evan J. Crawford ◽  
...  

AbstractWe present a multi-frequency study of the intermediate spiral SAB(r)bc type galaxy NGC 6744, using available data from the Chandra X-Ray telescope, radio continuum data from the Australia Telescope Compact Array and Murchison Widefield Array, and Wide-field Infrared Survey Explorer infrared observations. We identify 117 X-ray sources and 280 radio sources. Of these, we find nine sources in common between the X-ray and radio catalogues, one of which is a faint central black hole with a bolometric radio luminosity similar to the Milky Way’s central black hole. We classify 5 objects as supernova remnant (SNR) candidates, 2 objects as likely SNRs, 17 as H ii regions, 1 source as an AGN; the remaining 255 radio sources are categorised as background objects and one X-ray source is classified as a foreground star. We find the star-formation rate (SFR) of NGC 6744 to be in the range 2.8–4.7 M⊙~yr − 1 signifying the galaxy is still actively forming stars. The specific SFR of NGC 6744 is greater than that of late-type spirals such as the Milky Way, but considerably less that that of a typical starburst galaxy.


1988 ◽  
Vol 101 ◽  
pp. 253-256
Author(s):  
E. Fürst ◽  
W. Reich ◽  
E. Hummel ◽  
Y. Sofue

AbstractNew radio continuum and spectral line observations of the Galactic radio source G18.95-1.1 are reported. The distance to G18.95-1.1 is 2 kpc as derived from HI-21 cm spectral line observations. These data also indicate an interaction with the interstellar medium. The radio continuum observations classify G18.95-1.1 as a composite supernova remnant.


2020 ◽  
Vol 494 (3) ◽  
pp. 3627-3641 ◽  
Author(s):  
J R Allison ◽  
E M Sadler ◽  
S Bellstedt ◽  
L J M Davies ◽  
S P Driver ◽  
...  

ABSTRACT We present early science results from the First Large Absorption Survey in H i (FLASH), a spectroscopically blind survey for 21-cm absorption lines in cold hydrogen (H i) gas at cosmological distances using the Australian Square Kilometre Array Pathfinder (ASKAP). We have searched for H i absorption towards 1253 radio sources in the GAMA 23 field, covering redshifts between z = 0.34 and 0.79 over a sky area of approximately 50 deg2. In a purely blind search, we did not obtain any detections of 21-cm absorbers above our reliability threshold. Assuming a fiducial value for the H i spin temperature of Tspin = 100 K and source covering fraction cf = 1, the total comoving absorption path-length sensitive to all Damped Lyman α Absorbers (DLAs; NH i ≥ 2 × 1020 cm−2) is ΔX = 6.6 ± 0.3 (Δz = 3.7 ± 0.2) and super-DLAs (NH i ≥ 2 × 1021 cm−2) is ΔX = 111 ± 6 (Δz= 63 ± 3). We estimate upper limits on the H i column density frequency distribution function that are consistent with measurements from prior surveys for redshifted optical DLAs, and nearby 21-cm emission and absorption. By cross-matching our sample of radio sources with optical spectroscopic identifications of galaxies in the GAMA 23 field, we were able to detect 21-cm absorption at z = 0.3562 towards NVSS J224500−343030, with a column density of $N_{\rm H\,\small{I}} = (1.2 \pm 0.1) \times 10^{20}\, (T_{\rm spin}/100\, \mathrm{K})$ cm−2. The absorber is associated with GAMA J22450.05−343031.7, a massive early-type galaxy at an impact parameter of 17 kpc with respect to the radio source and which may contain a massive (MH i ≳ 3 × 109 M⊙) gas disc. Such gas-rich early types are rare, but have been detected in the nearby Universe.


2020 ◽  
Vol 635 ◽  
pp. A166
Author(s):  
S. J. Curran

By including the most recent observations of H I 21-cm absorption through nearby galactic discs, we confirm our previous assertion that there is an anti-correlation between the abundance of cool neutral atomic gas and impact parameter. In comparing the measured neutral hydrogen column densities of the sample with the absorption strength, we find a peak in the mean spin temperature of ⟨Tspin/f ⟩ ≈ 2310 K at an impact parameter of ρ ≈ 14 kpc, with ⟨Tspin/f ⟩≳1000 K in the remainder of the disc. This is significantly different to the spin temperature distribution in the Milky Way, which exhibits a constant ≈250 − 400 K over ρ = 8 − 25 kpc. The measured column densities may, however, suffer from beam dilution, which we show appears to be the case for the observations of H I 21-cm emission in which the beam subtends radii of ≳10 kpc. We therefore applied the column density profile of the Milky Way, in addition to the mean of the sample, observed at sufficiently high resolution, and the mean profile for the nearby ∼1012 M⊙ galaxies in the IllustrisTNG simulations. All of the models yield a peak in the mean spin temperature at similar impact parameters (r ≈ 10 − 15 kpc) as the measured column densities. These radii are similar to those of the spiral arms where H II regions are often concentrated. We therefore suggest that the elevated spin temperatures trace the H II regions observed in the outer disc of many spiral galaxies.


2020 ◽  
Vol 638 ◽  
pp. A78
Author(s):  
Hao Peng ◽  
Zhongzu Wu ◽  
Bo Zhang ◽  
Yongjun Chen ◽  
Xingwu Zheng ◽  
...  

We present results from VLBI observations of continuum and OH line emission in IRAS 02524+2046 as well as arcsecond-scale radio properties of this galaxy using VLA archive data. We found that there is no significant detection of radio continuum emission from VLBI observations. The arcsecond-scale radio images of this source show no clear extended emission. The total radio flux density at L and C bands are approximately 2.9 mJy and 1.0 mJy, respectively, which indicates a steep radio spectral index between the two bands. A steep spectral index, low brightness temperature, and high q-ratio (i.e., the far-infrared to the radio flux density), which are three critical indicators in the classification of radio activity in the nuclei of galaxies, are all consistent with the classification of this source as a starburst galaxy from its optical spectrum. The high-resolution line profile reveals that we detected both the 1665 MHz and 1667 MHz OH maser lines, which show two and three clear components, respectively. The channel maps show that the maser emission are distributed in a region of ∼210 pc × 90 pc. The detected maser components in different regions indicate similar double spectral features, which might be evidence that this galaxy is at a stage of major merger as seen from the optical morphology.


2012 ◽  
Vol 10 (H16) ◽  
pp. 618-618
Author(s):  
J. Kamenetzky ◽  
J. Glenn ◽  
N. Rangwala ◽  
P. Maloney ◽  
M. Bradford ◽  
...  

AbstractWe present Herschel-SPIRE imaging spectroscopy (194-671 μm) of the bright starburst galaxy M82. We use RADEX and a Bayesian Likelihood Analysis to simultaneously model the temperature, density, column density, and filling factor of both the cool and warm components of molecular gas traced by the entire CO ladder up to J=13-12. The high-J lines observed by SPIRE trace much warmer gas (~500 K) than those observable from the ground. The addition of 13CO (and [C I]) is new and indicates that [C I] may be tracing different gas than 12CO. At such a high temperature, cooling is dominated by molecular hydrogen; we conclude with a discussion on the possible excitation processes in this warm component. Photon-dominated region (PDR) models require significantly higher densities than those indicated by our Bayesian likelihood analysis in order to explain the high-J CO line ratios, though cosmic-ray enhanced PDR models can do a better job reproducing the emission at lower densities. Shocks and turbulent heating are likely required to explain the bright high-J emission.


2011 ◽  
pp. 95-102 ◽  
Author(s):  
E. Crawford ◽  
M.D. Filipovic ◽  
Horta de ◽  
G.F. Wong ◽  
N.F.H. Tothill ◽  
...  

We present new 6 and 3-cm radio-continuum maps of the Small Magellanic Cloud (SMC), created with the "peeling" technique and a joint deconvolution. The maps have resolutions of 3000 and 2000 and r.m.s., noise of 0.7 and 0.8 mJy/beam at 6 and 3 cm, respectively. These maps will be used for future studies of the SMC's radio source population and overall extended structure.


1991 ◽  
Vol 9 (2) ◽  
pp. 287-288
Author(s):  
R. Peng ◽  
J. B. Whiteoak

AbstractWe have used the Parkes 64m telescope to observe the 20 → 3−1E absorption of CH3 OH at 12.2 GHz towards 58 Galactic H II regions and dark clouds, yielding 38 detections. The results show that CH3 OH absorbing clouds have a typical optical depth of 0.25 and a column density of 8.4 × 1015 cm−2. CH3 OH absorption is often accompanied by unsaturated maser emission and is closely associated with background H II regions. CH3 OH absorption against the 2.7 K background is also observed in several dark clouds.


Sign in / Sign up

Export Citation Format

Share Document