scholarly journals The cool and warm molecular gas in M82 with Herschel-SPIRE

2012 ◽  
Vol 10 (H16) ◽  
pp. 618-618
Author(s):  
J. Kamenetzky ◽  
J. Glenn ◽  
N. Rangwala ◽  
P. Maloney ◽  
M. Bradford ◽  
...  

AbstractWe present Herschel-SPIRE imaging spectroscopy (194-671 μm) of the bright starburst galaxy M82. We use RADEX and a Bayesian Likelihood Analysis to simultaneously model the temperature, density, column density, and filling factor of both the cool and warm components of molecular gas traced by the entire CO ladder up to J=13-12. The high-J lines observed by SPIRE trace much warmer gas (~500 K) than those observable from the ground. The addition of 13CO (and [C I]) is new and indicates that [C I] may be tracing different gas than 12CO. At such a high temperature, cooling is dominated by molecular hydrogen; we conclude with a discussion on the possible excitation processes in this warm component. Photon-dominated region (PDR) models require significantly higher densities than those indicated by our Bayesian likelihood analysis in order to explain the high-J CO line ratios, though cosmic-ray enhanced PDR models can do a better job reproducing the emission at lower densities. Shocks and turbulent heating are likely required to explain the bright high-J emission.

2012 ◽  
Vol 8 (S292) ◽  
pp. 209-214
Author(s):  
Padelis P. Papadopoulos ◽  
Zhi-Yu Zhang ◽  
Axel Weiss ◽  
Paul van der Werf ◽  
Kate Isaak ◽  
...  

AbstractResults from a large, multi-J CO, 13CO, and HCN line survey of Luminous Infrared Galaxies (LIRGs: LIR≥ 1010 L⊙) in the local Universe (z≤0.1), complemented by CO J=4–3 up to J=13–12 observations from the Herschel Space Observatory (HSO), paints a new picture for the average conditions of the molecular gas of the most luminous of these galaxies with turbulence and/or large cosmic ray (CR) energy densities UCR rather than far-UV/optical photons from star-forming sites as the dominant heating sources. Especially in ULIRGs (LIR>1012 L⊙) the Photon Dominated Regions (PDRs) can encompass at most a few % of their molecular gas mass while the large UCR∼ 103 UCR, Galaxy, and the strong turbulence in these merger/starbursts, can volumetrically heat much of their molecular gas to Tkin∼ (100-200) K, unhindered by the high dust extinctions. Moreover the strong supersonic turbulence in ULIRGs relocates much of their molecular gas at much higher average densities (≥104 cm−3) than in isolated spirals (∼ 102–103 cm−3). This renders low-J CO lines incapable of constraining the properties of the bulk of the molecular gas in ULIRGs, with substantial and systematic underestimates of its mass possible when only such lines are used. Finally a comparative study of multi-J HCN lines and CO SLEDs from J=1–0 up to J=13–12 of NGC 6240 and Arp 193 offers a clear example of two merger/starbursts whose similar low-J CO SLEDs, and LIR/LCO,1−0 and LHCN, 1−0/LCO,1-0 ratios (proxies of the so-called SF efficiency and dense gas mass fraction), yield no indications about their strongly diverging CO SLEDs beyond J=4–3, and ultimately the different physical conditions in their molecular ISM. The much larger sensitivity of ALMA and its excellent site in the Atacama desert now allows the observations necessary to assess the dominant energy sources of the molecular gas and its mass in LIRGs without depending on the low-J CO lines.


2013 ◽  
Vol 9 (S303) ◽  
pp. 153-155
Author(s):  
T. Yoast-Hull ◽  
J. S. Gallagher ◽  
E. Zweibel

AbstractThe Galactic center contains strong magnetic fields, high radiation fields, and dense molecular gas, as is also the case in starburst galaxies. The close proximity of the Galactic center allows for more and better observations of the interstellar medium than for extragalactic sources making it an ideal place for testing models for cosmic ray interactions. We compare our semi-analytic model for cosmic ray interactions to published data for both the Galactic center and the starburst galaxy NGC 253. We present the predicted radio and γ-ray spectra and compare the results with published measurements. In this way we provide a quantitative basis for assessing the degree to which the Galactic center resembles a starburst system.


2018 ◽  
Vol 617 ◽  
pp. A73 ◽  
Author(s):  
◽  
H. Abdalla ◽  
F. Aharonian ◽  
F. Ait Benkhali ◽  
E. O. Angüner ◽  
...  

Context. NGC 253 is one of only two starburst galaxies found to emit γ-rays from hundreds of MeV to multi-TeV energies. Accurate measurements of the very-high-energy (VHE; E > 100 GeV) and high-energy (HE; E > 60 MeV) spectra are crucial to study the underlying particle accelerators, probe the dominant emission mechanism(s) and to study cosmic-ray interaction and transport. Aims. The measurement of the VHE γ-ray emission of NGC 253 published in 2012 by H.E.S.S. was limited by large systematic uncertainties. Here, the most up to date measurement of the γ-ray spectrum of NGC 253 is investigated in both HE and VHE γ-rays. Assuming a hadronic origin of the γ-ray emission, the measurement uncertainties are propagated into the interpretation of the accelerated particle population. Methods. The data of H.E.S.S. observations are reanalysed using an updated calibration and analysis chain. The improved Fermi–LAT analysis employs more than 8 yr of data processed using pass 8. The cosmic-ray particle population is evaluated from the combined HE–VHE γ-ray spectrum using NAIMA in the optically thin case. Results. The VHE γ-ray energy spectrum is best fit by a power-law distribution with a flux normalisation of (1.34 ± 0.14stat ± 0.27sys) × 10−13 cm−2 s−1 TeV1 at 1 TeV – about 40% above, but compatible with the value obtained in Abramowski et al. (2012). The spectral index Γ = 2.39 ± 0.14stat ± 0.25sys is slightly softer than but consistent with the previous measurement within systematic errors. In the Fermi energy range an integral flux of F(E > 60 MeV) = (1.56 ± 0.28stat ± 0.15sys) × 10−8 cm−2 s−1 is obtained. At energies above ∼3 GeV the HE spectrum is consistent with a power-law ranging into the VHE part of the spectrum measured by H.E.S.S. with an overall spectral index Γ = 2.22 ± 0.06stat. Conclusions. Two scenarios for the starburst nucleus are tested, in which the gas in the starburst nucleus acts as either a thin or a thick target for hadronic cosmic rays accelerated by the individual sources in the nucleus. In these two models, the level to which NGC 253 acts as a calorimeter is estimated to a range of fcal = 0.1 to 1 while accounting for the measurement uncertainties. The presented spectrum is likely to remain the most accurate measurements until the Cherenkov Telescope Array (CTA) has collected a substantial set of data towards NGC 253.


2019 ◽  
Vol 632 ◽  
pp. A72
Author(s):  
L. Mohrmann ◽  
A. Specovius ◽  
D. Tiziani ◽  
S. Funk ◽  
D. Malyshev ◽  
...  

In classical analyses of γ-ray data from imaging atmospheric Cherenkov telescopes (IACTs), such as the High Energy Stereoscopic System (H.E.S.S.), aperture photometry, or photon counting, is applied in a (typically circular) region of interest (RoI) encompassing the source. A key element in the analysis is to estimate the amount of background in the RoI due to residual cosmic ray-induced air showers in the data. Various standard background estimation techniques have been developed in the last decades, most of them rely on a measurement of the background from source-free regions within the observed field of view. However, in particular in the Galactic plane, source analysis and background estimation are hampered by the large number of, sometimes overlapping, γ-ray sources and large-scale diffuse γ-ray emission. For complicated fields of view, a three-dimensional (3D) likelihood analysis shows the potential to be superior to classical analysis. In this analysis technique, a spectromorphological model, consisting of one or multiple source components and a background component, is fitted to the data, resulting in a complete spectral and spatial description of the field of view. For the application to IACT data, the major challenge of such an approach is the construction of a robust background model. In this work, we apply the 3D likelihood analysis to various test data recently made public by the H.E.S.S. collaboration, using the open analysis frameworks ctools and Gammapy. First, we show that, when using these tools in a classical analysis approach and comparing to the proprietary H.E.S.S. analysis framework, virtually identical high-level analysis results, such as field-of-view maps and spectra, are obtained. We then describe the construction of a generic background model from data of H.E.S.S. observations, and demonstrate that a 3D likelihood analysis using this background model yields high-level analysis results that are highly compatible with those obtained from the classical analyses. This validation of the 3D likelihood analysis approach on experimental data is an important step towards using this method for IACT data analysis, and in particular for the analysis of data from the upcoming Cherenkov Telescope Array (CTA).


2021 ◽  
Vol 257 (2) ◽  
pp. 47
Author(s):  
Ningyu Tang ◽  
Di Li ◽  
Gan Luo ◽  
Carl Heiles ◽  
Sheng-Li Qin ◽  
...  

Abstract We present high-sensitivity CH 9 cm ON/OFF observations toward 18 extragalactic continuum sources that have been detected with OH 18 cm absorption in the Millennium survey with the Arecibo telescope. CH emission was detected toward 6 of the 18 sources. The excitation temperature of CH has been derived directly through analyzing all detected ON and OFF velocity components. The excitation temperature of CH 3335 MHz transition ranges from −54.5 to −0.4 K and roughly follows a log-normal distribution peaking within [−5, 0] K, which implies overestimation by 20% to more than 10 times during calculating CH column density by assuming the conventional value of −60 or −10 K. Furthermore, the column density of CH would be underestimated by a factor of 1.32 ± 0.03 when adopting local thermal equilibrium assumption instead of using the CH three hyperfine transitions. We found a correlation between the column density of CH and OH following log N(CH) = (1.80 ± 0.49) and log N(OH −11.59 ± 6.87. The linear correlation between the column density of CH and H2 is consistent with that derived from visible wavelengths studies, confirming that CH is one of the best tracers of H2 components in diffuse molecular gas.


2019 ◽  
Vol 209 ◽  
pp. 01003
Author(s):  
Antonio Marinelli ◽  
Dario Grasso ◽  
Sofia Ventura

The TeV/PeV neutrino emission from our Galaxy is related to the distribution of cosmic-ray accelerators, their maximal energy of injection as well as the propagation of injected particles and their interaction with molecular gas. In the last years Interesting upper limits on the diffuse hadronic emission from the whole Galaxy, massive molecular clouds and Fermi Bubbles were set by the IceCube and ANTARES as well as HAWC and Fermi-LAT observations. On the other hand no evidence of Galactic point-like excess has been observed up to now by high-energy neutrino telescopes. This result can be related to the short duration of the PeV hadronic activity of the sources responsible for the acceleration of primary protons, possibly including supernova remnants. All these aspects will be discussed in this work.


1987 ◽  
Vol 115 ◽  
pp. 145-146
Author(s):  
T. L. Wilson ◽  
E. Serabyn ◽  
C. Henkel ◽  
C. M. Walmsley

A fully sampled map of size ∼1′×3′ (R.A. Dec), centered on BN-KL has been made in the J = 1-0 line of 12C18O with 21″ angular resolution. The 12C18O emission is concentrated in a ← 40″ wide continuous strip running S to NE. Several maxima are superposed on the ridge, but none exceeds the average emission level by more than 40%. There is no intense peak of 12C18O J = 1-0 line emission centered on BN-KL, in contrast to maps of the dust emission. The dust and 12C18O results can be reconciled with a constant (CO/H2) ratio if there are variations in the kinetic temperature and column density of ∼50%. Peaks in both temperature and column density are then located near BN-KL, and 90″ to the south. From the estimated CO column density, about 10% of the carbon is in the form of CO. Near the BN-KL region, the 12C18O line profiles tend to become wider. These wider lines appear to be superposed on a weak, 18 km s−1 (FWHP) wide pedestal. In regions 40″ NE and 30″ S of BN-KL, the 12C18O lines have widths of less than 2 km s−1. Presumably, these are the locations of high density, quiescent molecular gas. The radial velocity of the CO emission increases from 6.5 km s−1 (at 90″ S) to 10.5 km s−1 (at 60″ NE) of BN-KL. Close to BN-KL, however, there is evidence that this trend is reversed.


2018 ◽  
Vol 618 ◽  
pp. A91 ◽  
Author(s):  
L. Guzman-Ramirez ◽  
A. I. Gómez-Ruíz ◽  
H. M. J. Boffin ◽  
D. Jones ◽  
R. Wesson ◽  
...  

Context. Observations of molecular gas have played a key role in developing the current understanding of the late stages of stellar evolution. Aims. The survey Planetary nebulae AND their cO Reservoir with APEX (PANDORA) was designed to study the circumstellar shells of evolved stars with the aim to estimate their physical parameters. Methods. Millimetre carbon monoxide (CO) emission is the most useful probe of the warm molecular component ejected by low- to intermediate-mass stars. CO is the second-most abundant molecule in the Universe, and the millimetre transitions are easily excited, thus making it particularly useful to study the mass, structure, and kinematics of the molecular gas. We present a large survey of the CO (J = 3−2) line using the Atacama Pathfinder EXperiment (APEX) telescope in a sample of 93 proto-planetary nebulae and planetary nebulae. Results. CO (J = 3−2) was detected in 21 of the 93 objects. Only two objects (IRC+10216 and PN M2-9) had previous CO (J = 3−2) detections, therefore we present the first detection of CO (J = 3−2) in the following 19 objects: Frosty Leo, HD 101584, IRAS 19475+3119, PN M1-11, V* V852 Cen, IC 4406, Hen 2-113, Hen 2-133, PN Fg 3, PN Cn 3-1, PN M2-43, PN M1-63, PN M1-65, BD+30 3639, Hen 2-447, Hen 2-459, PN M3-35, NGC 3132, and NGC 6326. Conclusions. CO (J = 3−2) was detected in all 4 observed pPNe (100%), 15 of the 75 PNe (20%), one of the 4 wide binaries (25%), and in 1 of the 10 close binaries (10%). Using the CO (J = 3−2) line, we estimated the column density and mass of each source. The H2 column density ranges from 1.7 × 1018 to 4.2 × 1021 cm−2 and the molecular mass ranges from 2.7 × 10−4 to 1.7 × 10−1 M⊙.


2015 ◽  
Vol 11 (S315) ◽  
pp. 26-29
Author(s):  
Julia Kamenetzky ◽  
Naseem Rangwala ◽  
Jason Glenn ◽  
Philip Maloney ◽  
Alex Conley

AbstractMolecular gas is the raw material for star formation and is commonly traced by the carbon monoxide (CO) molecule. The atmosphere blocks all but the lowest-J transitions of CO for observatories on the ground, but the launch of the Herschel Space Observatory revealed the CO emission of nearby galaxies from J = 4−3 to J = 13−12. Herschel showed that mid- and high-J CO lines in nearby galaxies are emitted from warm gas, accounting for approximately 10% of the molecular mass, but the majority of the CO luminosity. The energy budget of this warm, highly-excited gas is a significant window into the feedback interactions among molecular gas, star formation, and galaxy evolution. Likely, mechanical heating is required to explain the excitation. Such gas has also been observed in star forming regions within our galaxy.We have examined all ~300 spectra of galaxies from the Herschel Fourier Transform Spectrometer and measured line fluxes or upper limits for the CO J = 4−3 to J = 13−12, [CI], and [NII] 205 micron lines in ~200 galaxies, taking systematic effects of the FTS into account. We will present our line fitting method, illustrate trends available so far in this large sample, and preview the full 2-component radiative transfer likelihood modeling of the CO emission using an illustrative sample of 20 galaxies, including comparisons to well-resolved galactic regions. This work is a comprehensive study of mid- and high-J CO emission among a variety of galaxy types, and can be used as a resource for future (sub)millimeter studies of galaxies with ground-based instruments.


Sign in / Sign up

Export Citation Format

Share Document