12.2 GHz CH3OH Absorption in Southern Molecular Clouds

1991 ◽  
Vol 9 (2) ◽  
pp. 287-288
Author(s):  
R. Peng ◽  
J. B. Whiteoak

AbstractWe have used the Parkes 64m telescope to observe the 20 → 3−1E absorption of CH3 OH at 12.2 GHz towards 58 Galactic H II regions and dark clouds, yielding 38 detections. The results show that CH3 OH absorbing clouds have a typical optical depth of 0.25 and a column density of 8.4 × 1015 cm−2. CH3 OH absorption is often accompanied by unsaturated maser emission and is closely associated with background H II regions. CH3 OH absorption against the 2.7 K background is also observed in several dark clouds.

1992 ◽  
Vol 10 (2) ◽  
pp. 113-117
Author(s):  
R.S. Peng ◽  
J.B. Whiteoak ◽  
J.E. Reynolds ◽  
T.B.H. Kuiper ◽  
W.L. Peters

AbstractWe have mapped the molecular clouds of Sgr B2 in the 110 → 101 ortho-transition of C3H2 at 18.3 GHz, using the 70-m NASA telescope at Tidbinbilla (beamwidth 55 arcsec). Three clouds show absorption against the Sgr B2 continuum emission at radial velocities of 50, 65 and 80 km s−1. The 65-km s−1 cloud covers most of the observed area (4 × 6 arcmin in right ascension and declination), has a peak optical depth of 2.7 and a corresponding C3H2 column density of 7.6 × 1015 cm−2. The C3H2 fractional abundance relative to H2 is 1.5 × 10−9. The 80-km s−1 cloud, located north of the Sgr B2 continuum peak, has a peak optical depth of 0.9 and a C3H2 column density of 1.9 × 1015 cm−2. The 50-km s−1 cloud is centred 2 arcmin south of the continuum peak; here the minimum optical depth of 0.5 yields a column density of 5.3 × 1014cm−2.


2008 ◽  
Vol 4 (S251) ◽  
pp. 369-370
Author(s):  
S. Pilling ◽  
D. P. P. Andrade ◽  
A. C. F. Santos ◽  
H. M. Boechat-Roberty

AbstractWe present experimental results obtained from photoionization and photodissociation processes of abundant interstellar methanol (CH3OH) as an alternative route for the production of H3+ in dense clouds. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS) employing soft X-ray and time-of-flight mass spectrometry. Mass spectra were obtained using the photoelectron-photoion coincidence techniques. Absolute averaged cross sections for the production of H3+ due to molecular dissociation of methanol by soft X-rays (C1s edge) were determined. The H3+'s photoproduction rate and column density were been estimated adopting a typical soft X-ray luminosity inside dense molecular and the observed column density of methanol. Assuming a steady state scenario, the highest column density value for the photoproduced H3+ was about 1011 cm2, which gives the ratio photoproduced/observed of about 0.05%, as in the case of dense molecular cloud AFGL 2591. Despite the small value, this represent a new and alternative source of H3+ into dense molecular clouds and it is not been considered as yet in interstellar chemistry models.


1989 ◽  
Vol 120 ◽  
pp. 511-517
Author(s):  
John M. Dickey ◽  
R. W. Garwood

AbstractThe abundance of 21-cm absorption lines seen in surveys at high latitudes can be translated into a line of sight abundance of clouds vs. column density using an empirical relationship between temperature and optical depth. As VLA surveys of 21-cm absorption at low latitudes are now becoming available, it is possible to study the variation of this function with galactic radius. It is interesting to compare the abundance of these diffuse atomic clouds (with temperatures of 50 to 100 K and masses of 1 to 10 M⊙) to the abundance of molecular clouds. To do the latter we must make assumptions about cloud cross-sections in order to convert the line of sight abundance of diffuse clouds into a number per unit volume, and to convert from cloud column density to mass. The spectrum of diffuse clouds matches fairly well the spectrum of molecular clouds, although observationally there is a gap of several orders of magnitude in cloud mass. Optical absorption studies also agree well with the 21-cm results for clouds of column density a few times 1020 M⊙.


1991 ◽  
Vol 147 ◽  
pp. 37-40
Author(s):  
G. Joncas

The presence of HI in the interstellar medium is ubiquitous. HI is the principal actor in the majority of the physical processes at work in our Galaxy. Restricting ourselves to the topics of this symposium, atomic hydrogen is involved with the formation of molecular clouds and is one of the byproducts of their destruction by young stars. HI has different roles during a molecular cloud's life. I will discuss here a case of coexisting HI and H2 at large scale and the origin of HI in star forming regions. For completeness' sake, it should be mentionned that there are at least three other aspects of HI involvement: HI envelopes around molecular clouds, the impact of SNRs (see work on IC 443), and the role of HI in quiescent dark clouds (see van der Werf's work).


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Ararat G. Yeghikyan

The transformation of the energy dependence of the cosmic ray proton flux in the keV to GeV region is investigated theoretically when penetrating inside molecular clouds ( mag). The computations suggest that energy losses of the cosmic ray particles by interaction with the matter of the molecular cloud are principally caused by the inelastic (electronic) interaction potential; the transformed energy distribution of energetic protons is determined mainly by the column density of the absorbing medium. A cutoff of the cosmic ray spectrum inside clouds by their magnetic fields is also phenomenologically taken into account. This procedure allows a determination of environment-dependent ionization rates of molecular clouds. The theoretically predicted ionization rates are in good agreement with those derived from astronomical observations of absorption lines in the spectrum of the cloud connected with the Herbig Be star LkH 101.


2018 ◽  
Vol 614 ◽  
pp. A111 ◽  
Author(s):  
Marco Padovani ◽  
Alexei V. Ivlev ◽  
Daniele Galli ◽  
Paola Caselli

Context. Galactic cosmic rays (CRs) are a ubiquitous source of ionisation of the interstellar gas, competing with UV and X-ray photons as well as natural radioactivity in determining the fractional abundance of electrons, ions, and charged dust grains in molecular clouds and circumstellar discs. Aims. We model the propagation of various components of Galactic CRs versus the column density of the gas. Our study is focussed on the propagation at high densities, above a few g cm−2, especially relevant for the inner regions of collapsing clouds and circumstellar discs. Methods. The propagation of primary and secondary CR particles (protons and heavier nuclei, electrons, positrons, and photons) is computed in the continuous slowing down approximation, diffusion approximation, or catastrophic approximation by adopting a matching procedure for the various transport regimes. A choice of the proper regime depends on the nature of the dominant loss process modelled as continuous or catastrophic. Results. The CR ionisation rate is determined by CR protons and their secondary electrons below ≈130 g cm−2 and by electron-positron pairs created by photon decay above ≈600 g cm−2. We show that a proper description of the particle transport is essential to compute the ionisation rate in the latter case, since the electron and positron differential fluxes depend sensitively on the fluxes of both protons and photons. Conclusions. Our results show that the CR ionisation rate in high-density environments, such as the inner parts of collapsing molecular clouds or the mid-plane of circumstellar discs, is higher than previously assumed. It does not decline exponentially with increasing column density, but follows a more complex behaviour because of the interplay of the different processes governing the generation and propagation of secondary particles.


1987 ◽  
Vol 115 ◽  
pp. 499-499 ◽  
Author(s):  
P. M. Solomon

The CO Galactic Plane Survey consists of 40,572 spectral line observations in the region between 1 = 8° to 90° and b = −1°.05 to +1°.05 spaced every 3 arc minutes, carried out with the FCRAO 14-m antenna. The velocity coverage from −100 to +200 km/s includes emission from all galactic radii. This high resolution survey was designed to observe and identify essentially all molecular clouds or cloud components larger than 10 parsecs in the inner galaxy. There are two populations of molecular clouds which separate according to temperature. The warm clouds are closely associated with H II regions, exhibit a non-axisymmetric galactic distribution and are a spiral arm population. The cold clouds are a disk population, are not confined to any patterns in longitude-velocity space and must be widespread in the galaxy both in and out of spiral arms. The correlation between far infrared luminosities from IRAS, and molecular masses from CO is utilized to determine a luminosity to mass ratio for the clouds. A face-on picture of the galaxy locating the warm population is presented, showing ring like or spiral arm features at R ∼ 5, 7.5 and 9 kpc. The cloud size and mass spectrum will be discussed and evidence presented showing the presence of clusters of giant molecular clouds with masses of 106 to 107 M⊙. The two populations of clouds probably have different star forming luminosity functions. The implication of the two populations for star formation mechanisms will be discussed.


2019 ◽  
Vol 489 (4) ◽  
pp. 4497-4512
Author(s):  
Naiping Yu ◽  
Jun-Jie Wang ◽  
Jin-Long Xu

ABSTRACT We investigated the chemical evolution of HC3N in six dense molecular clouds, using archival available data from the Herschel infrared Galactic Plane Survey (Hi-GAL) and the Millimeter Astronomy Legacy Team Survey at 90 GHz (MALT90). Radio sky surveys of the Multi-Array Galactic Plane Imaging Survey (MAGPIS) and the Sydney University Molonglo Sky Survey (SUMSS) indicate these dense molecular clouds are associated with ultracompact H ii (UCH ii) regions and/or classical H ii regions. We find that in dense molecular clouds associated with normal classical H ii regions, the abundance of HC3N begins to decrease or reaches a plateau when the dust temperature gets hot. This implies UV photons could destroy the molecule of HC3N. On the other hand, in the other dense molecular clouds associated with UCH ii regions, we find the abundance of HC3N increases with dust temperature monotonously, implying HC3N prefers to be formed in warm gas. We also find that the spectra of HC3N (10-9) in G12.804−0.199 and RCW 97 show wing emissions, and the abundance of HC3N in these two regions increases with its non-thermal velocity width, indicating HC3N might be a shock origin species. We further investigated the evolutionary trend of N(N2H+)/N(HC3N) column density ratio, and found this ratio could be used as a chemical evolutionary indicator of cloud evolution after the massive star formation is started.


Sign in / Sign up

Export Citation Format

Share Document