scholarly journals 4.1. Radio continuum and molecular gas in the Galactic center: large-scale structures

1998 ◽  
Vol 184 ◽  
pp. 161-168
Author(s):  
Yoshiaki Sofue

The radio emission from the Galactic Center is a mixture of thermal (free-free) and non-thermal (synchrotron) emissions (Fig. 1a). However, the spectral index in the central 3° region is flat almost everywhere (Sofue 1985), even in regions where strong linear polarization is detected. Therefore, a flat spectrum observed near the galactic center can no longer be taken as an indicator of thermal emission.

Author(s):  
Mark R. Calabretta ◽  
Lister Staveley-Smith ◽  
David G. Barnes

AbstractArchival data from the HI Parkes All-Sky Survey (HIPASS) and the HI Zone of Avoidance (HIZOA) survey have been carefully reprocessed into a new 1.4 GHz continuum map of the sky south of δ = +25°. The wide sky coverage, high sensitivity of 40 mK (limited by confusion), resolution of 14.4 arcmin (compared to 51 arcmin for the Haslam et al. 408 MHz and 35 arcmin for the Reich et al. 1.4 GHz surveys), and low level of artefacts make this map ideal for numerous studies, including: merging into interferometer maps to complete large-scale structures; decomposition of thermal and non-thermal emission components from Galactic and extragalactic sources; and comparison of emission regions with other frequencies. The new map is available for download.


2019 ◽  
Vol 627 ◽  
pp. A5 ◽  
Author(s):  
F. Vazza ◽  
S. Ettori ◽  
M. Roncarelli ◽  
M. Angelinelli ◽  
M. Brüggen ◽  
...  

Detecting the thermal and non-thermal emission from the shocked cosmic gas surrounding large-scale structures represents a challenge for observations, as well as a unique window into the physics of the warm-hot intergalactic medium. In this work, we present synthetic radio and X-ray surveys of large cosmological simulations in order to assess the chances of jointly detecting the cosmic web in both frequency ranges. We then propose best observing strategies tailored for existing (LOFAR, MWA, and XMM) or future instruments (SKA-LOW and SKA-MID, Athena, and eROSITA). We find that the most promising targets are the extreme peripheries of galaxy clusters in an early merging stage, where the merger causes the fast compression of warm-hot gas onto the virial region. By taking advantage of a detection in the radio band, future deep X-ray observations will probe this gas in emission, and help us to study plasma conditions in the dynamic warm-hot intergalactic medium with unprecedented detail.


1989 ◽  
Vol 136 ◽  
pp. 213-231 ◽  
Author(s):  
Yoshiaki Sofue

Radio continuum observations of the galactic center region have revealed a number of vertical structures running across the galactic plane, most of which are reasonably attributed either to vertical magnetic fields or to energy release out of the galactic plane. We review the observed radio structures and discuss their properties and origins with a particular attention to the unusual manifestation of energy release in the galactic center. The relation of the continuum structures to the expanding and/or contracting molecular gas rings is also discussed.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


2015 ◽  
Vol 12 (108) ◽  
pp. 20150044 ◽  
Author(s):  
Dervis C. Vural ◽  
Alexander Isakov ◽  
L. Mahadevan

Starting with Darwin, biologists have asked how populations evolve from a low fitness state that is evolutionarily stable to a high fitness state that is not. Specifically of interest is the emergence of cooperation and multicellularity where the fitness of individuals often appears in conflict with that of the population. Theories of social evolution and evolutionary game theory have produced a number of fruitful results employing two-state two-body frameworks. In this study, we depart from this tradition and instead consider a multi-player, multi-state evolutionary game, in which the fitness of an agent is determined by its relationship to an arbitrary number of other agents. We show that populations organize themselves in one of four distinct phases of interdependence depending on one parameter, selection strength. Some of these phases involve the formation of specialized large-scale structures. We then describe how the evolution of independence can be manipulated through various external perturbations.


Sign in / Sign up

Export Citation Format

Share Document