scholarly journals Can the Core-Mantle Boundary Topography Influence the Earth's Nutation?

1990 ◽  
Vol 141 ◽  
pp. 161-162
Author(s):  
V. V. Bykova

The nutation of the Earth with slightly nonelliptical liquid core is investigated by the perturbation theory method. It is shown that first-order terms affect the core ellipticity and its triaxiality. The most sensitive nutation terms in the second approximation were found to be retrograde 18.6-year term and retrograde annual term. The observed nutation amplitude values can be satisfied by special core-mantle boundary form.

1979 ◽  
Vol 82 ◽  
pp. 55-57
Author(s):  
L. V. Morrison

Observations of the Earth's rotation have shown irregular variations of rate which have characteristic times of decades. These have been attributed to transfer of angular momentum between core and mantle by some mechanism such as inertial coupling, viscous stress, electromagnetic coupling or stresses produced by topographic features on the core mantle boundary.


2020 ◽  
Author(s):  
Mioara Mandea ◽  
Veronique Dehant ◽  
Anny Cazenave

<div> <p>To understand the processes involved in the deep interior of the Earth and explaining its evolution, in particular the dynamics of the Earth’s fluid iron-rich outer core, only indirect satellite and ground observations are available. They each provide invaluable information about the core flow but are incomplete on their own:</p> <p>-        The time dependent magnetic field, originating mainly within the core, can be used to infer the motions of the fluid at the top of the core on decadal and subdecadal time scales.</p> <p>-        The time dependent gravity field variations that reflect changes in the mass distribution within the Earth and at its surface occur on a broad range of time scales. Decadal and interannual variations include the signature of the flow inside the core, though they are largely dominated by surface contributions related to the global water cycle and climate-driven land ice loss.</p> <p>-        Earth rotation changes (or variations in the length of the day) also occur on these time scales, and are largely related to the core fluid motions through exchange of angular momentum between the core and the mantle at the core-mantle boundary.</p> <p>Here, we present the main activities proposed in the frame of the GRACEFUL ERC project, which aims to combine information about the core deduced from the gravity field, from the magnetic field and from the Earth rotation in synergy, in order to examine in unprecedented depth the dynamical processes occurring inside the core and at the core-mantle boundary.</p> </div>


1988 ◽  
Vol 129 ◽  
pp. 377-377
Author(s):  
Bradford H. Hager

The core-mantle boundary (CMB), separating the molten metallic core from the overlying solid silicate mantle, marks the largest discontinuity in mechanical properties within the Earth. The ∼ 200 km thick region just above the CMB, named D″ by Bullen (1950), is characterized by an anomalous gradient in seismic velocity versus depth. D″ was originally interpreted as a region with a strong compositional gradient due to the accumulation of dense material at the base of the mantle. Subsequently, the anomalous gradient was interpreted as the result of a strong temperature gradient in a hot thermal boundary layer at the base of the mantle, an interpretation motivated by the requiremnet that heat involved in generating the geodynamo must be transported out of the core and through the mantle by convection.


2020 ◽  
Vol 12 (24) ◽  
pp. 4186
Author(s):  
Mioara Mandea ◽  
Véronique Dehant ◽  
Anny Cazenave

While the main causes of the temporal gravity variations observed by the Gravity Recovery and Climate Experiment (GRACE) space mission result from water mass redistributions occurring at the surface of the Earth in response to climatic and anthropogenic forces (e.g., changes in land hydrology, ocean mass, and mass of glaciers and ice sheets), solid Earth’s mass redistributions were also recorded by these observations. This is the case, in particular, for the glacial isostatic adjustment (GIA) or the viscous response of the mantle to the last deglaciation. However, it has only recently been shown that the gravity data also contain the signature of flows inside the outer core and their effects on the core–mantle boundary (CMB). Detecting deep Earth’s processes in GRACE observations offers an exciting opportunity to provide additional insight into the dynamics of the core–mantle interface. Here, we present one aspect of the GRACEFUL (GRavimetry, mAgnetism and CorE Flow) project, i.e., the possibility to use gravity field data for understanding the dynamic processes inside the fluid core and core–mantle boundary of the Earth, beside that offered by the geomagnetic field variations.


Science ◽  
1997 ◽  
Vol 275 (5306) ◽  
pp. 1623-1625 ◽  
Author(s):  
K. G. Holland ◽  
T. J. Ahrens

Nature ◽  
1987 ◽  
Vol 325 (6106) ◽  
pp. 678-683 ◽  
Author(s):  
Andrea Morelli ◽  
Adam M. Dziewonski

2006 ◽  
Vol 49 (1) ◽  
Author(s):  
G. Scalera ◽  
G. Lavecchia

A one-day symposium on new and conventional ideas in plate tectonics and Mediterranean geodynamics was held in Rome on February 19, 2003 at the headquarters of INGV. There were two main reasons for such an initiative. The first was an invitation to Giancarlo Scalera from the «Gabriele D’Annunzio» University of Chieti to present his alternative ideas on global tectonics to final year students of the Regional Geology course. The second was a reciprocal invitation to Giusy Lavecchia and Francesco Stoppa to explain their criticisms of the application of subduction-related models to Italian geology and to present their data on the recently discovered intra-Apennines carbonatite occurrences. It was decided to dedicate an entire day to seminars, involving people with a more conventional approach to geodynamics, especially those involved with seismic tomography. In the last few years, high-resolution mantle tomographic models have been widely used to unravel the geometry of subduction zones. A turning point in the field, however, was a review paper written by Fukao et al. (Rev. Geophysics, 39, 291-323, 2001) showing that there was no clear evidence for slab subduction down to the core-mantle boundary, thus posing a major problem on the balance between the lithosphere subducted at consuming plate margins and the large amount of oceanic lithosphere accreted at diverging plate margins. This prompted the need to re-evaluate the nature of subduction and plate margin evolution. Accepting the theory of plate tectonics, many problems remain open, especially those regarding plate driving mechanisms and their possible link with the forces developed at the core-mantle boundary. Might these forces trigger pulsating tectonic and magmatic activity, with mantle upwellings and large-scale emission of CO2, capable of causing dramatic changes in the composition of the atmosphere and changes at the Earth’s surface? Could these lead to major catastrophic changes in Earth history? During the one-day symposium, a stimulating discussion took place involving different interpretations of observations, especially those relating to the geodynamics of the Mediterranean region. Although the papers in this collection do not provide unique solutions, they do, however, provide new insights into some problems and in some cases suggest new interpretations. Many questions also arise about the relationships between the tectonics of the lithosphere and the deep mantle processes. May the denser portions of the inner parts of the Earth transform into shallower, lighter chemical phases, with a possible increase in the Earth’s volume? May the asthenosphere above growing plume heads be capable of dragging the overlying lithosphere? May mantle plumes be wet rather than hot? Some papers consider gravitation to be a driving mechanism for the nucleation of contractional belts and others even doubt the compressional origin of orogens. Finally – as a link to fundamental physics – an original mechanism of energy conversion from gravitons to photons is proposed as a supply of energy for global tectonic processes. Obviously, because of an often diverse philosophical and scientific background, it is difficult for the ideas presented in this supplement to be shared by all readers and contributors. But we hope that these ideas will help to encourage critical evaluations of some commonly accepted concepts in modern plate tectonic theory. European geoscientists have available to them an exceptional natural laboratory – the Mediterranean and surrounding orogens – complete with all of its paradoxes and contradictions. In this natural laboratory, we hope that new evidence and new solutions to a variety of problems outside of the Mediterranean region will be found!


Sign in / Sign up

Export Citation Format

Share Document