scholarly journals The Cluster NGC 330 in the SMC: Radial Velocities of Individual Stars

1980 ◽  
Vol 85 ◽  
pp. 339-339
Author(s):  
M. W. Feast ◽  
C. Black

Radial velocities based on 81 image tube spectra at 30 Å mm−1 are given for 25 stars (17 early type supergiants or upper main sequence stars and 8 late type stars) in the young SMC cluster NGC 330. An upper (one standard deviation) limit to the velocity dispersion is found to be 2 km s−1. The mass-to-light ratio is likely to be less than 0.1 in solar units. Results for other young Magellanic Cloud clusters derived on the assumption that they are tidally limited are consistent with this result. Spectroscopic binaries with semi-amplitudes, K, greater than about 10 km s−1 appear to be rare or absent amongst the stars studied.

2007 ◽  
Vol 3 (S246) ◽  
pp. 113-114 ◽  
Author(s):  
S. Mengel ◽  
L. E. Tacconi-Garman

AbstractUsing ISAAC/VLT, we have obtained individual spectra of all NIR-bright stars in the central 2′ × 2′ of the cluster Westerlund 1 (Wd 1) with a resolution of R ≈ 9000 at a central wavelength of 2.30 μm. This allowed us to determine radial velocities of ten post-main-sequence stars, and from these values a velocity dispersion. Assuming virial equilibrium, the dispersion of σ = 8.4 km/s leads to a total dynamical cluster mass of 1.25 × 105M⊙, comparable to the photometric mass of the cluster. There is no extra-virial motion which would have to be interpreted as a signature of cluster expansion or dissolution.


1992 ◽  
Vol 151 ◽  
pp. 471-472
Author(s):  
David W. Latham ◽  
Robert D. Mathieu ◽  
Alejandra A. E. Milone ◽  
Robert J. Davis

In 1971 Roger Griffin and Jim Gunn began monitoring the radial velocities of most of the members brighter than the main-sequence turnoff in the old open cluster M67, primarily using the 200-inch Hale Telescope. In 1982 the torch was passed to Dave Latham and Bob Mathieu, who began monitoring many of the same stars with the 1.5-meter Tillinghast Reflector and the Multiple-Mirror Telescope on Mt. Hopkins. We have successively combined these two sets of data, plus some additional CORAVEL velocities kindly provided by Michel Mayor, to obtain 20 years of time coverage (e.g. Mathieu et al. 1986). Among the stars brighter than magnitude V = 12.7 we have already published orbits for 22 spectroscopic binaries (Mathieu et al. 1990). At Mt. Hopkins an extension of this survey to many of the cluster members down to magnitude V = 15.5 has already yielded thirteen additional orbital solutions, with the promise of many more to come.


1992 ◽  
Vol 135 ◽  
pp. 158-160 ◽  
Author(s):  
David W. Latham ◽  
Tsevi Mazeh ◽  
Robert P. Stefanik ◽  
Robert J. Davis ◽  
Bruce W. Carney ◽  
...  

AbstractFor almost 1500 stars in the Carney-Latham survey of proper-motion stars we have accumulated about 20,000 precise radial velocities. Already we have orbital solutions for more than 150 spectroscopic binaries in this sample, and about 100 additional binary candidates with variable velocity. We find that among the metal-poor halo field stars in this sample the frequency of short-period spectroscopic binaries is indistinguishable from that of the disk. The distribution of eccentricity versus period shows evidence for tidal circularization on the main sequence. For the binaries more metal poor than [m/H] = −1.6 there is a clean transition from circular to elliptical orbits at a period of about 19 days. For longer periods the distribution of eccentricity is the same as for stars in the disk of the Galaxy.


1992 ◽  
Vol 135 ◽  
pp. 155-157 ◽  
Author(s):  
David W. Latham ◽  
Robert D. Mathieu ◽  
Alejandra A.E. Milone ◽  
Robert J. Davis

AbstractFor almost 400 members of M67 we have accumulated about 5,000 precise radial velocities. Already we have orbital solutions for more than 32 spectroscopic binaries in M67. Many of these orbits were derived by combining the Palomar and CfA observations, thus extending the time coverage to more than 20 years. The distribution of eccentricity versus period shows evidence for tidal circularization on the main sequence. The transition from circular orbits is fairly clean. Excluding the blue stragglers, the first eccentric orbit has a period of 11.0 days, while the last circular orbit has a period of 12.4 days. For longer periods the distribution of eccentricity is the same as for field stars. The blue straggler S1284 has an eccentric orbit despite its short period of 4.2 days.


1959 ◽  
Vol 10 ◽  
pp. 39-40
Author(s):  
O. C. Wilson

Modern photoelectric techniques yield magnitudes and colors of stars with accuracies of the order of a few thousandths and a few hundredths of a magnitude respectively. Hence for star clusters it is possible to derive highly accurate color-magnitude arrays since all of the members of a cluster may be considered to be at the same distance from the observer. It is much more difficult to do this for the nearby stars where all of the objects concerned are at different, and often poorly determined, distances. If one depends upon trigonometric parallaxes, the bulk of the reliable individual values will refer to main sequence stars, and while the mean luminosities of brighter stars are given reasonably well by this method, the scatter introduced into a color-magnitude array by using individual trigonometrically determined luminosities could obscure important features. Somewhat similar objections could be raised against the use of the usual spectroscopic parallaxes which also should be quite good for the main sequence but undoubtedly exhibit appreciable scatter for some, at least, of the brighter stars.


2019 ◽  
Vol 628 ◽  
pp. A41 ◽  
Author(s):  
D. Pizzocaro ◽  
B. Stelzer ◽  
E. Poretti ◽  
S. Raetz ◽  
G. Micela ◽  
...  

The relation between magnetic activity and rotation in late-type stars provides fundamental information on stellar dynamos and angular momentum evolution. Rotation-activity studies found in the literature suffer from inhomogeneity in the measurement of activity indexes and rotation periods. We overcome this limitation with a study of the X-ray emitting, late-type main-sequence stars observed by XMM-Newton and Kepler. We measured rotation periods from photometric variability in Kepler light curves. As activity indicators, we adopted the X-ray luminosity, the number frequency of white-light flares, the amplitude of the rotational photometric modulation, and the standard deviation in the Kepler light curves. The search for X-ray flares in the light curves provided by the EXTraS (Exploring the X-ray Transient and variable Sky) FP-7 project allows us to identify simultaneous X-ray and white-light flares. A careful selection of the X-ray sources in the Kepler field yields 102 main-sequence stars with spectral types from A to M. We find rotation periods for 74 X-ray emitting main-sequence stars, 20 of which do not have period reported in the previous literature. In the X-ray activity-rotation relation, we see evidence for the traditional distinction of a saturated and a correlated part, the latter presenting a continuous decrease in activity towards slower rotators. For the optical activity indicators the transition is abrupt and located at a period of ~10 d but it can be probed only marginally with this sample, which is biased towards fast rotators due to the X-ray selection. We observe seven bona-fide X-ray flares with evidence for a white-light counterpart in simultaneous Kepler data. We derive an X-ray flare frequency of ~0.15 d−1, consistent with the optical flare frequency obtained from the much longer Kepler time-series.


Sign in / Sign up

Export Citation Format

Share Document