scholarly journals Radio Radiation Characteristics of Pulsars and Magnetic Dipole Angle

1981 ◽  
Vol 95 ◽  
pp. 217-218 ◽  
Author(s):  
Wang Zhen-ru ◽  
Chu Yi

The structure of the pulsar magnetosphere, the location of the radio emission region and the radio emission mechanism are important theoretical subjects in the research of pulsars. There may be close relations between these subjects. Nevertheless, it should be possible to set up some empirical relations among them which can be considered as a foundation for studying these important subjects. In this paper some of these relations are studied.

1992 ◽  
Vol 128 ◽  
pp. 410-411 ◽  
Author(s):  
P. M. McCulloch

During the course of this colloquium many papers have been presented on observational aspects of pulsar astronomy. In the following discussion I have not attempted to be comprehensive but have selected a number of areas of interest to me.The basic pulsar properties appear to be consistent over the full range of pulsar periods from 1 ms to 4s, implying that the emission mechanism is the same for all pulsars. There was a general consensus among the observers that the radio emission occurs low down in the pulsar's magnetosphere above the magnetic polar region.


1992 ◽  
Vol 128 ◽  
pp. 114-116
Author(s):  
Tong Yi ◽  
Li Zhong Yuan

AbstractWe present a possible emission mechanism based on the idea of current sheets in magnetohydrodynamice. The current sheets are formed close to the light cylinder due to a relativistic effect involving partly frozen-in particles. We estimate that the energy emitted by the current sheets fits the observations fairly well.


1996 ◽  
Vol 160 ◽  
pp. 155-158
Author(s):  
Jean A. Eilek

AbstractThe radio emission process in pulsars is still a mystery. It will help us all if the “theorist’s freedom” in allowed models can be reduced. In order to do this, high quality data must be considered carefully in the light of existing or new theories, and the theories must be extended to address the data.


2000 ◽  
Vol 177 ◽  
pp. 265-266
Author(s):  
D. Mitra ◽  
S. Konar ◽  
D. Bhattacharya ◽  
A. V. Hoensbroech ◽  
J. H. Seiradakis ◽  
...  

AbstractThe evolution of the multipolar structure of the magnetic field of isolated neutron stars is studied assuming the currents to be confined to the crust. Lower orders (≤ 25) of multipole are seen to evolve in a manner similar to the dipole suggesting little or no evolution of the expected pulse shape. We also study the multifrequency polarization position angle traverse of PSR B0329+54 and find a significant frequency dependence above 2.7 GHz. We interpret this as an evidence of strong multipolar magnetic field present in the radio emission region.


2017 ◽  
Vol 13 (S337) ◽  
pp. 79-82
Author(s):  
Cristina-Diana Ilie ◽  
Patrick Weltevrede

AbstractThe aim of this work is to explore the connection between variability in single pulse intensity and periodic switching of the position angle (PA) of the linear polarisation and how this relates to the radio emission mechanism. There are five pulsars reported in the literature for which the PA is seen to periodically change in tandem with the variability in their pulse shapes. This behaviour is seemingly incompatible with two well established models of the radio emission mechanism. The purpose of this study is to investigate in a systematic way whether this phenomenon is common or if only happens in special cases, using a high-quality sample of pulsar data observed with the Parkes telescope. We show that the connection between polarisation variability and intensity variability is more common than previously expected.


2020 ◽  
Vol 500 (2) ◽  
pp. 2620-2626
Author(s):  
Jun Yang ◽  
Zsolt Paragi ◽  
Emanuele Nardini ◽  
Willem A Baan ◽  
Lulu Fan ◽  
...  

ABSTRACT When a black hole accretes close to the Eddington limit, the astrophysical jet is often accompanied by radiatively driven, wide-aperture and mildly relativistic winds. Powerful winds can produce significant non-thermal radio emission via shocks. Among the nearby critical accretion quasars, PDS 456 has a very massive black hole (about 1 billion solar masses), shows a significant star-forming activity (about 70 solar masses per year), and hosts exceptionally energetic X-ray winds (power up to 20 per cent of the Eddington luminosity). To probe the radio activity in this extreme accretion and feedback system, we performed very long baseline interferometric (VLBI) observations of PDS 456 at 1.66 GHz with the European VLBI Network and the enhanced Multi-Element Remotely Linked Interferometry Network. We find a rarely seen complex radio-emitting nucleus consisting of a collimated jet and an extended non-thermal radio emission region. The diffuse emission region has a size of about 360 pc and a radio luminosity about three times higher than that of the nearby extreme starburst galaxy Arp 220. The powerful nuclear radio activity could result either from a relic jet with a peculiar geometry (nearly along the line of sight) or more likely from diffuse shocks formed naturally by the existing high-speed winds impacting on high-density star-forming regions.


1977 ◽  
Vol 217 ◽  
pp. 832 ◽  
Author(s):  
K. Kawamura ◽  
I. Suzuki

Sign in / Sign up

Export Citation Format

Share Document