Improved Prediction of Losses with Large Eddy Simulation in a Low- Pressure Turbine

2021 ◽  
pp. 1-38
Author(s):  
Kenji Miki ◽  
Ali Ameri

Abstract There is a need to improve predictions of losses resulting from large eddy simulations (LES) of low-pressure turbines (LPT) in gas turbines. This may be done by assessing the accuracy of predictions against validation data and understanding the source of any inaccuracies. LES is a promising approach for capturing the laminar/turbulent transition process in a LPT. In previous studies, the authors utilized LES to model the flow field over a Variable Speed Power Turbine (VSPT) blade and successfully captured characteristic features of separation/reattachment and transition on the suction side at both the cruise (positive incidence) and take-off conditions (negative incidence) and as well, simulated the effect of freestream turbulence (FST) on those phenomena. The predicted pressure loading profiles agreed well with the experimental data for both a high and a low FST case at a Reynolds number of Reex = 220,000. In this paper, we present wake profiles resulting from computations for a range of FST values. Although the predicted wake profiles for the lowest FST case (Tu = 0.5%) matched the experimental data, at higher FST (Tu = 10-15%,) the wake was wider than the experimentally measured wake and for both cases were displaced laterally when compared to the experimental measurements. In our investigation of the causes of the said discrepancies we have identified important effects which could strongly influence the predicted wake profile. Predicted losses were improved by assuring the validity of the flow solution.

2021 ◽  
Author(s):  
Kenji Miki ◽  
Ali Ameri

Abstract There is a need to improve predictions of losses resulting from large eddy simulations (LES) of low-pressure turbines (LPT) in gas turbines. This may be done by assessing the accuracy of predictions against validation data and understanding the source of any inaccuracies. LES is a promising approach for capturing the laminar/turbulent transition process in a LPT. In previous studies, the authors utilized LES to model the flow field over a Variable Speed Power Turbine (VSPT) blade and successfully captured characteristic features of separation/reattachment and transition on the suction side at both the cruise (positive incidence) and take-off conditions (negative incidence) and as well, simulated the effect of free-stream turbulence (FST) on those phenomena. The predicted pressure loading profiles agreed well with the experimental data for both a high and a low FST case at a Reynolds number of Reex = 220,000. In this paper, we present wake profiles resulting from computations for a range of FST values. Although the predicted wake profiles for the lowest FST case (Tu = 0.5%) matched the experimental data, at higher FST (Tu = 10–15%,) the wake was wider than the experimentally measured wake and for both cases were displaced laterally when compared to the experimental measurements. In our investigation of the causes of the said discrepancies we have identified important effects which could strongly influence the predicted wake profile. Predicted losses were improved by assuring the validity of the flow solution. This was done by utilizing spectral analysis to scrutinize the dynamic behavior of the wake and determine solution accuracy resulting from low mesh density and low accuracy of convective modeling.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
V. Michelassi ◽  
J. G. Wissink

Incompressible large eddy simulation and direct numerical simulation of a low-pressure turbine atRe=5.18×104and1.48×105with discrete incoming wakes are analyzed to identify the turbulent kinetic energy generation mechanism outside of the blade boundary layer. The results highlight the growth of turbulent kinetic energy at the bow apex of the wake and correlate it to the stress-strain tensors relative orientation. The production rate is analytically split according to the principal axes, and then terms are computed by using the simulation results. The analysis of the turbulent kinetic energy is followed both along the discrete incoming wakes and in the stationary frame of reference. Both direct numerical and large eddy simulation concur in identifying the same production mechanism that is driven by both a growth of strain rate in the wake, first, followed by the growth of turbulent shear stress after. The peak of turbulent kinetic energy diffuses and can eventually reach the suction side boundary layer for the largest Reynolds number investigated here with higher incidence angle. As a consequence, the local turbulence intensity outside the boundary layer can grow significantly above the free-stream level with a potential impact on the suction side boundary layer transition mechanism.


Author(s):  
Stephen K. Roberts ◽  
Metin I. Yaras

In this paper, large-eddy simulation of the transition process in a separation bubble is compared to experimental results. The measurements and simulations are conducted under low free-stream turbulence conditions over a flat plate with a streamwise pressure distribution typical of those encountered on the suction side of turbine airfoils. The computational grid is sufficiently refined that the effects of sub-grid scale turbulence are adequately represented by the numerical dissipation of the computational algorithm. The large-eddy simulations are shown to accurately capture the transition process in the separated shear layer. The results of these simulations are used to gain further insight into the breakdown mechanisms in transitioning separation bubbles.


2005 ◽  
Vol 128 (2) ◽  
pp. 232-238 ◽  
Author(s):  
Stephen K. Roberts ◽  
Metin I. Yaras

In this paper, large-eddy simulation of the transition process in a separation bubble is compared to experimental results. The measurements and simulations are conducted under low freestream turbulence conditions over a flat plate with a streamwise pressure distribution typical of those encountered on the suction side of turbine airfoils. The computational grid is refined to the extent that the simulation qualifies as a “coarse” direct numerical simulation. The simulations are shown to accurately capture the transition process in the separated shear layer. The results of these simulations are used to gain further insight into the breakdown mechanisms in transitioning separation bubbles.


Author(s):  
Dario Barsi ◽  
Carlo Costa ◽  
Davide Lengani ◽  
Daniele Simoni ◽  
Marina Ubaldi

2012 ◽  
Vol 152-154 ◽  
pp. 1313-1318
Author(s):  
Tao Lu ◽  
Su Mei Liu ◽  
Ping Wang ◽  
Wei Yyu Zhu

Velocity fluctuations in a mixing T-junction were simulated in FLUENT using large-eddy simulation (LES) turbulent flow model with sub-grid scale (SGS) Smagorinsky–Lilly (SL) model. The normalized mean and root mean square velocities are used to describe the time-averaged velocities and the velocities fluctuation intensities. Comparison of the numerical results with experimental data shows that the LES model is valid for predicting the flow of mixing in a T-junction junction. The numerical results reveal the velocity distributions and fluctuations are basically symmetrical and the fluctuation at the upstream of the downstream of the main duct is stronger than that at the downstream of the downstream of the main duct.


2021 ◽  
Author(s):  
Jihang Li ◽  
Hyunguk Kwon ◽  
Drue Seksinsky ◽  
Daniel Doleiden ◽  
Jacqueline O’Connor ◽  
...  

Abstract Pilot flames are commonly used to extend combustor operability limits and suppress combustion oscillations in low-emissions gas turbines. Combustion oscillations, a coupling between heat release rate oscillations and combustor acoustics, can arise at the operability limits of low-emissions combustors where the flame is more susceptible to perturbations. While the use of pilot flames is common in land-based gas turbine combustors, the mechanism by which they suppress instability is still unclear. In this study, we consider the impact of a central jet pilot on the stability of a swirl-stabilized flame in a variable-length, single-nozzle combustor. Previously, the pilot flame was found to suppress the instability for a range of equivalence ratios and combustor lengths. We hypothesize that combustion oscillation suppression by the pilot occurs because the pilot provides hot gases to the vortex breakdown region of the flow that recirculate and improve the static, and hence dynamic, stability of the main flame. This hypothesis is based on a series of experimental results that show that pilot efficacy is a strong function of pilot equivalence ratio but not pilot flow rate, which would indicate that the temperature of the pilot gases as well as the combustion intensity of the pilot flame play more of a role in oscillation stabilization than the length of the pilot flame relative to the main flame. Further, the pilot flame efficacy increases with pilot flame equivalence ratio until it matches the main flame equivalence ratio; at pilot equivalence ratios greater than the main equivalence ratio, the pilot flame efficacy does not change significantly with pilot equivalence ratio. To understand these results, we use large-eddy simulation to provide a detailed analysis of the flow in the region of the pilot flame and the transport of radical species in the region between the main flame and pilot flame. The simulation, using a flamelet/progress variable-based chemistry tabulation approach and standard eddy viscosity/diffusivity turbulence closure models, provides detailed information that is inaccessible through experimental measurements.


2021 ◽  
Author(s):  
David Vanpouille ◽  
Dimitrios Papadogiannis ◽  
Stéphane Hiernaux

Abstract Surge margin is critical for the safety of aeronautical compressors, hence predicting it early in the design process using CFD is mandatory. However, close to surge, steady-state Reynolds Averaged Navier-Stokes (RANS) simulations are proven inadequate. Unsteady techniques such as Unsteady RANS (URANS) and Large Eddy Simulation (LES) can provide more reliable predictions. Nevertheless, the accuracy of such methods are dependent on the method used to handle the rotor/stator interfaces. The most precise method, the sliding mesh, requires simulating the full annulus or a periodic sector, which can be very costly. Other techniques to reduce the domain exist, such as the phase-lagged approach or geometric blade scaling, but introduce restrictive assumptions on the flow at near-stall conditions. The objective of this paper is to investigate the near-stall flow of a low-pressure compressor using unsteady methods of varying fidelity: URANS with the phase lag assumption, URANS on a periodic sector and a high-fidelity LES on a smaller periodic sector achieved using geometric blade scaling. Results are compared to experimental measurements. An overall good agreement is found. Results show that the tip leakage vortex is not the origin of the stall on the studied configuration and a hub corner separation is initiated. LES further validates the (U)RANS flow predictions and brings additional insight on unsteady flow separations.


Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 65 ◽  
Author(s):  
Arne Heinrich ◽  
Guido Kuenne ◽  
Sebastian Ganter ◽  
Christian Hasse ◽  
Johannes Janicka

Combustion will play a major part in fulfilling the world’s energy demand in the next 20 years. Therefore, it is necessary to understand the fundamentals of the flame–wall interaction (FWI), which takes place in internal combustion engines or gas turbines. The FWI can increase heat losses, increase pollutant formations and lowers efficiencies. In this work, a Large Eddy Simulation combined with a tabulated chemistry approach is used to investigate the transient near wall behavior of a turbulent premixed stoichiometric methane flame. This sidewall quenching configuration is based on an experimental burner with non-homogeneous turbulence and an actively cooled wall. The burner was used in a previous study for validation purposes. The transient behavior of the movement of the flame tip is analyzed by categorizing it into three different scenarios: an upstream, a downstream and a jump-like upstream movement. The distributions of the wall heat flux, the quenching distance or the detachment of the maximum heat flux and the quenching point are strongly dependent on this movement. The highest heat fluxes appear mostly at the jump-like movement because the flame behaves locally like a head-on quenching flame.


2020 ◽  
Vol 8 (9) ◽  
pp. 728
Author(s):  
Said Alhaddad ◽  
Lynyrd de Wit ◽  
Robert Jan Labeur ◽  
Wim Uijttewaal

Breaching flow slides result in a turbidity current running over and directly interacting with the eroding, submarine slope surface, thereby promoting further sediment erosion. The investigation and understanding of this current are crucial, as it is the main parameter influencing the failure evolution and fate of sediment during the breaching phenomenon. In contrast to previous numerical studies dealing with this specific type of turbidity currents, we present a 3D numerical model that simulates the flow structure and hydrodynamics of breaching-generated turbidity currents. The turbulent behavior in the model is captured by large eddy simulation (LES). We present a set of numerical simulations that reproduce particular, previously published experimental results. Through these simulations, we show the validity, applicability, and advantage of the proposed numerical model for the investigation of the flow characteristics. The principal characteristics of the turbidity current are reproduced well, apart from the layer thickness. We also propose a breaching erosion model and validate it using the same series of experimental data. Quite good agreement is observed between the experimental data and the computed erosion rates. The numerical results confirm that breaching-generated turbidity currents are self-accelerating and indicate that they evolve in a self-similar manner.


Sign in / Sign up

Export Citation Format

Share Document