scholarly journals Planning Future Space Measurements of the CMB

1996 ◽  
Vol 168 ◽  
pp. 447-452 ◽  
Author(s):  
J.L. Puget ◽  
N. Aghanim ◽  
R. Gispert ◽  
F.R. Bouchet ◽  
E. Hivon

A central problem in cosmology is the building and testing of a full and detailed theory for the formation of (large-scale) structures in the Universe. It is widely believed that the observed structures today grew by gravitational instability out of very small density perturbations. Such perturbations should have left imprints as small temperature anisotropies in the cosmic microwave background (CMB) radiation.

2020 ◽  
Vol 634 ◽  
pp. A81
Author(s):  
V. Bonjean

The Planck collaboration has extensively used the six Planck HFI frequency maps to detect the Sunyaev–Zel’dovich (SZ) effect with dedicated methods, for example by applying (i) component separation to construct a full-sky map of the y parameter or (ii) matched multi-filters to detect galaxy clusters via their hot gas. Although powerful, these methods may still introduce biases in the detection of the sources or in the reconstruction of the SZ signal due to prior knowledge (e.g. the use of the generalised Navarro, Frenk, and White profile model as a proxy for the shape of galaxy clusters, which is accurate on average but not for individual clusters). In this study, we use deep learning algorithms, more specifically, a U-net architecture network, to detect the SZ signal from the Planck HFI frequency maps. The U-net shows very good performance, recovering the Planck clusters in a test area. In the full sky, Planck clusters are also recovered, together with more than 18 000 other potential SZ sources for which we have statistical indications of galaxy cluster signatures, by stacking at their positions several full-sky maps at different wavelengths (i.e. the cosmic microwave background lensing map from Planck, maps of galaxy over-densities, and the ROSAT X-ray map). The diffuse SZ emission is also recovered around known large-scale structures such as Shapley, A399–A401, Coma, and Leo. Results shown in this proof-of-concept study are promising for potential future detection of galaxy clusters with low SZ pressure with this kind of approach, and more generally, for potential identification and characterisation of large-scale structures of the Universe via their hot gas.


2020 ◽  
Vol 228 ◽  
pp. 00010 ◽  
Author(s):  
A. Fasano ◽  
M. Aguiar ◽  
A. Benoit ◽  
A. Bideaud ◽  
O. Bourrion ◽  
...  

Clusters of galaxies are used to map the large-scale structures in the universe and as probe of universe evolution. They can be observed through the Sunyaev-Zel’dovich (SZ) effect. In this respect the spectro-imaging at low resolution frequency is an important tool, today, for the study of cluster of galaxies. We have developed KISS (KIDs Interferometer Spectrum Survey), a spectrometric imager dedicated to the secondary anisotropies of the Cosmic Microwave Background (CMB). The multi-frequency approach permits to improve the component separation with respect to predecessor experiments. In this paper, firstly, we provide a description of the scientific context and the state of the art of SZ observations. Secondly, we describe the KISS instrument. Finally, we show preliminary results of the ongoing commissioning campaign.


1992 ◽  
Vol 01 (02) ◽  
pp. 427-437 ◽  
Author(s):  
MICHIYASU NAGASAWA ◽  
KATSUHIKO SATO

The dynamical evolution of global textures is studied. The evolution equation of a texture field is solved numerically and the effect of cosmic expansion is explicitly introduced. The process of knot collapse is traced and the knot number at conformal time, τ, per comoving volume is 0.01~0.02/τ3. The density perturbations by textures are investigated by a clustering analysis. High density clusters have large-scale correlation and extend widely, which enables the formation of large-scale structures. Moreover, the initial fluctuations by textures show the highly non-Gaussian spatial distribution. Thus they produce the density perturbations which may yield the cosmological structures in the universe.


1988 ◽  
Vol 130 ◽  
pp. 43-50
Author(s):  
Nick Kaiser

Fluctuations in the microwave background will have been imprinted at z ≃ 1000, when the photons and the plasma decoupled. On angular scales greater than a few degrees these fluctuations provide a clear view of any primordial density perturbations, and therefore a clean test of theories which invoke such fluctuations from which to form the structure we see in the universe. On smaller angular scales the predictions are less certain: reionization of the gas may modify the spectrum of the primordial fluctuations, and secondary fluctuations may be generated.Here I shall review some recent theoretical developments. A brief survey is made of the currently popular theories for the primordial perturbations, with emphasis on the predictions for large scale anisotropy. One major uncetainty in the predictions arises from the normalisation of the fluctuations to e.g. galaxy clustering, and much attention is given to the question of ‘biased’ galaxy formation. The effect of reionization on the primordial fluctuations is discussed, as is the anisotropy generated from scattering off hot gas in clusters, groups and galaxies.


1987 ◽  
Vol 124 ◽  
pp. 335-348
Author(s):  
Neta A. Bahcall

The evidence for the existence of very large scale structures, ∼ 100h−1Mpc in size, as derived from the spatial distribution of clusters of galaxies is summarized. Detection of a ∼ 2000 kms−1 elongation in the redshift direction in the distribution of the clusters is also described. Possible causes of the effect are peculiar velocities of clusters on scales of 10–100h−1Mpc and geometrical elongation of superclusters. If the effect is entirely due to the peculiar velocities of clusters, then superclusters have masses of order 1016.5M⊙ and may contain a larger amount of dark matter than previously anticipated.


Universe ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 92 ◽  
Author(s):  
Jérôme Martin

According to the theory of cosmic inflation, the large scale structures observed in our Universe (galaxies, clusters of galaxies, Cosmic Background Microwave—CMB—anisotropy...) are of quantum mechanical origin. They are nothing but vacuum fluctuations, stretched to cosmological scales by the cosmic expansion and amplified by gravitational instability. At the end of inflation, these perturbations are placed in a two-mode squeezed state with the strongest squeezing ever produced in Nature (much larger than anything that can be made in the laboratory on Earth). This article studies whether astrophysical observations could unambiguously reveal this quantum origin by borrowing ideas from quantum information theory. It is argued that some of the tools needed to carry out this task have been discussed long ago by J. Bell in a, so far, largely unrecognized contribution. A detailled study of his paper and of the criticisms that have been put forward against his work is presented. Although J. Bell could not have realized it when he wrote his letter since the quantum state of cosmological perturbations was not yet fully characterized at that time, it is also shown that Cosmology and cosmic inflation represent the most interesting frameworks to apply the concepts he investigated. This confirms that cosmic inflation is not only a successful paradigm to understand the early Universe. It is also the only situation in Physics where one crucially needs General Relativity and Quantum Mechanics to derive the predictions of a theory and, where, at the same time, we have high-accuracy data to test these predictions, making inflation a playground of utmost importance to discuss foundational issues in Quantum Mechanics.


1994 ◽  
Vol 5 (1-4) ◽  
pp. 75-79 ◽  
Author(s):  
S. A. Pustil'nik ◽  
A. V. Ugryumov ◽  
V. A. Lipovetsky

2002 ◽  
Vol 168-169 ◽  
pp. 404-409 ◽  
Author(s):  
F.M Ramos ◽  
C.A Wuensche ◽  
A.L.B Ribeiro ◽  
R.R Rosa

Sign in / Sign up

Export Citation Format

Share Document