scholarly journals Gas Content of Markarian Starburst Galaxies

1999 ◽  
Vol 186 ◽  
pp. 279-280
Author(s):  
Rafik Kandalyan

The main results of this study can be summarized as follows: (a) The HI and CO linewidths are well correlated. Interaction between galaxies has little influence on the HI and CO line broadening. A rapidly rotating nuclear disk in the galaxy could lead to CO line broadening, while the HI line is less affected by the rotating disk. Molecular gas in Markarian galaxies is centrally concentrated. (b) For past and present star formation activity both HI and H2 components of the gas are important. The atomic and molecular gas surface densities are well correlated with blue, FIR, and radio continuum surface brightnesses, but the H2 surface density is better correlated than that of the HI. The two gas phases are also connected. (c) In general, galaxies with UV-excess (Markarian galaxies) are not distinguished by star formation properties from non-UV galaxies, however some second order differences may exist, like the relation between atomic surface density and radio continuum surface brightness.

2006 ◽  
Vol 2 (S237) ◽  
pp. 441-441
Author(s):  
U. Lisenfeld ◽  
M. Dahlem ◽  
J. Rossa

AbstractWe investigate the relation between the existence and size of radio halos, which are believed to be created by star formation (SF) related energy input into the interstellar medium, and other galaxy properties, most importantly star formation activity and galaxy mass. Based on radio continuum and Hα observations of a sample of seven galaxies we find a direct, linear correlation of the radial extent of gaseous halos on the size of the actively star-forming parts of the galaxy disks. Data of a larger sample of 22 galaxies indicate that the threshold energy input rate into the disk ISM per unit surface area for the creation of a gaseous halo depends on the mass surface density of the galaxy, in the sense that a higher (lower) threshold has to be surpassed for galaxies with a higher (lower) surface density. Because of the good prediction of the existence of a radio halo from these two parameters, we conclude that they are important, albeit not the only contributors. The compactness of the SF-related energy input is also found to be a relevant factor. Galaxies with relatively compact SF distributions are more likely to have gaseous halos than others with more widespread SF activity. These results quantify the so-called “break-out” condition for matter to escape from galaxy disks, as used in all current models of the interstellar medium.More details can be found Dahlem, Lisenfeld & Rossa, 2006, A&A 457, 121.


2006 ◽  
Vol 2 (S237) ◽  
pp. 331-335
Author(s):  
Yu Gao

AbstractActive star formation (SF) is tightly related to the dense molecular gas in the giant molecular clouds' dense cores. Our HCN (measure of the dense molecular gas) survey in 65 galaxies (including 10 ultraluminous galaxies) reveals a tight linear correlation between HCN and IR (SF rate) luminosities, whereas the correlation between IR and CO (measure of the total molecular gas) luminosities is nonlinear. This suggests that the global SF rate depends more intimately upon the amount of dense molecular gas than the total molecular gas content. This linear relationship extends to both the dense cores in the Galaxy and the hyperluminous extreme starbursts at high-redshift. Therefore, the global SF law in dense gas appears to be linear all the way from dense cores to extreme starbursts, spanning over nine orders of magnitude in IR luminosity.


2019 ◽  
Vol 625 ◽  
pp. A19 ◽  
Author(s):  
M. Querejeta ◽  
E. Schinnerer ◽  
A. Schruba ◽  
E. Murphy ◽  
S. Meidt ◽  
...  

It remains unclear what sets the efficiency with which molecular gas transforms into stars. Here we present a new VLA map of the spiral galaxy M 51 in 33 GHz radio continuum, an extinction-free tracer of star formation, at 3″ scales (∼100 pc). We combined this map with interferometric PdBI/NOEMA observations of CO(1–0) and HCN(1–0) at matched resolution for three regions in M 51 (central molecular ring, northern and southern spiral arm segments). While our measurements roughly fall on the well-known correlation between total infrared and HCN luminosity, bridging the gap between Galactic and extragalactic observations, we find systematic offsets from that relation for different dynamical environments probed in M 51; for example, the southern arm segment is more quiescent due to low star formation efficiency (SFE) of the dense gas, despite its high dense gas fraction. Combining our results with measurements from the literature at 100 pc scales, we find that the SFE of the dense gas and the dense gas fraction anti-correlate and correlate, respectively, with the local stellar mass surface density. This is consistent with previous kpc-scale studies. In addition, we find a significant anti-correlation between the SFE and velocity dispersion of the dense gas. Finally, we confirm that a correlation also holds between star formation rate surface density and the dense gas fraction, but it is not stronger than the correlation with dense gas surface density. Our results are hard to reconcile with models relying on a universal gas density threshold for star formation and suggest that turbulence and galactic dynamics play a major role in setting how efficiently dense gas converts into stars.


2011 ◽  
Vol 7 (S284) ◽  
pp. 371-378
Author(s):  
Roland M. Crocker

AbstractThe Galactic centre – as the closest galactic nucleus – holds both intrinsic interest and possibly represents a useful analogue to starburst nuclei which we can observe with orders of magnitude finer detail than these external systems. The environmental conditions in the GC – here taken to mean the inner 200 pc in diameter of the Milky Way – are extreme with respect to those typically encountered in the Galactic disk. The energy densities of the various GC ISM components are typically ~two orders of magnitude larger than those found locally and the star-formation rate density ~three orders of magnitude larger. Unusually within the Galaxy, the Galactic centre exhibits hard-spectrum, diffuse TeV (=1012 eV) gamma-ray emission spatially coincident with the region's molecular gas. Recently the nuclei of local starburst galaxies NGC 253 and M82 have also been detected in gamma-rays of such energies. We have embarked on an extended campaign of modelling the broadband (radio continuum to TeV gamma-ray), non- thermal signals received from the inner 200 pc of the Galaxy. On the basis of this modelling we find that star-formation and associated supernova activity is the ultimate driver of the region's non-thermal activity. This activity drives a large-scale wind of hot plasma and cosmic rays out of the GC. The wind advects the locally-accelerated cosmic rays quickly, before they can lose much energy in situ or penetrate into the densest molecular gas cores where star-formation occurs. The cosmic rays can, however, heat/ionize the lower density/warm H2 phase enveloping the cores. On very large scales (~10 kpc) the non-thermal signature of the escaping GC cosmic rays has probably been detected recently as the spectacular ‘Fermi bubbles’ and corresponding ‘YWMAP haze’.


2018 ◽  
Vol 14 (S344) ◽  
pp. 233-239
Author(s):  
Alberto D. Bolatto

AbstractThis is a brief review of our understanding of the properties of the interstellar medium (ISM) in dwarf galaxies in connection to their star formation activity. What are the dominant phases of the ISM in these objects? How do the properties of these phases depend on the galaxy properties? What do we know about their cold gas content and its link to star formation activity? Does star formation proceed differently in these galaxies? How does star formation feedback operate in dwarf galaxies? The availability of observations from space-based facilities such as FUSE, Spitzer, Herschel, and Fermi, as well as observatories such as SOFIA and ALMA, is allowing us to make significant strides in our understanding of these questions.


2017 ◽  
Vol 608 ◽  
pp. A48 ◽  
Author(s):  
H. Dannerbauer ◽  
M. D. Lehnert ◽  
B. Emonts ◽  
B. Ziegler ◽  
B. Altieri ◽  
...  

It is not yet known if the properties of molecular gas in distant protocluster galaxies are significantly affected by their environment as galaxies are in local clusters. Through a deep, 64 h of effective on-source integration with the Australian Telescope Compact Array (ATCA), we discovered a massive, Mmol = 2.0 ± 0.2× 1011 M⊙, extended, ~40 kpc, CO(1–0)-emitting disk in the protocluster surrounding the radio galaxy, MRC 1138−262. The galaxy, at zCO = 2.1478, is a clumpy, massive disk galaxy, M∗ ~ 5 × 1011 M⊙, which lies 250 kpc in projection from MRC 1138−262 and is a known Hα emitter, named HAE229. This source has a molecular gas fraction of ~30%. The CO emission has a kinematic gradient along its major axis, centered on the highest surface brightness rest-frame optical emission, consistent with HAE229 being a rotating disk. Surprisingly, a significant fraction of the CO emission lies outside of the UV/optical emission. In spite of this, HAE229 follows the same relation between star-formation rate and molecular gas mass as normal field galaxies. HAE229 is the first CO(1–0) detection of an ordinary, star-forming galaxy in a protocluster. We compare a sample of cluster members at z > 0.4 thatare detected in low-order CO transitions, with a similar sample of sources drawn from the field. We confirm findings that the CO-luminosity and full-width at half maximum are correlated in starbursts and show that this relation is valid for normal high-z galaxies as well as for those in overdensities. We do not find a clear dichotomy in the integrated Schmidt-Kennicutt relation for protocluster and field galaxies. Our results suggest that environment does not have an impact on the “star-formation efficiency” or the molecular gas content of high-redshift galaxies. Not finding any environmental dependence in these characteristics, especially for such an extended CO disk, suggests that environmentally-specific processes such as ram pressure stripping do not operate efficiently in (proto)clusters.


2020 ◽  
Vol 641 ◽  
pp. A24
Author(s):  
Tsan-Ming Wang ◽  
Chorng-Yuan Hwang

We investigated the influence of the random velocity of molecular gas on star-formation activities of six nearby galaxies. The physical properties of a molecular cloud, such as temperature and density, influence star-formation activities in the cloud. Additionally, local and turbulent motions of molecules in a cloud may exert substantial pressure on gravitational collapse and thus prevent or reduce star formation in the cloud. However, the influence of gas motion on star-formation activities remains poorly understood. We used data from the Atacama Large Millimeter/submillimeter Array to obtain 12CO(J = 1 − 0) flux and velocity dispersion. We then combined these data with 3.6 and 8 micron midinfrared data from the Spitzer Space Telescope to evaluate the effects of gas motion on star-formation activities in several nearby galaxies. We discovered that relatively high velocity dispersion in molecular clouds corresponds with relatively low star-formation activity. Considering the velocity dispersion as an additional parameter, we derived a modified Kennicutt-Schmidt law with a gas surface density power index of 0.84 and velocity dispersion power index of −0.61.


2021 ◽  
Vol 646 ◽  
pp. A127
Author(s):  
M. Hamed ◽  
L. Ciesla ◽  
M. Béthermin ◽  
K. Małek ◽  
E. Daddi ◽  
...  

Aims. We study a system of two galaxies, Astarte and Adonis, at z ∼ 2. At this time, the Universe was undergoing the peak of its star formation activity. Astarte is a dusty star-forming galaxy at the massive end of the main sequence (MS), and Adonis is a less massive companion galaxy that is bright in the ultraviolet and has an optical spectroscopic redshift. We investigate whether this ultramassive galaxy is quenching, and whether it has always been on the MS of star-forming galaxies. Methods. We used the code CIGALE to model the spectral energy distribution. The code relies on the energetic balance between the ultraviolet and the infrared. We derived some of the key physical properties of Astarte and Adonis, mainly their star formation rates (SFRs), stellar masses, and dust luminosities. We inspected the variation of the physical parameters depending on the assumed dust-attenuation law. We also estimated the molecular gas mass of Astarte from its CO emission, using different αCO and transition ratios (r31), and we discuss the implication of the various assumptions on the gas-mass derivation. Reults. We find that Astarte exhibits a MS-like star formation activity, and Adonis is undergoing a strong starburst phase. The molecular gas mass of Astarte is far lower than the gas fraction of typical star-forming galaxies at z = 2. This low gas content and high SFR result in a depletion time of 0.22 ± 0.07 Gyr, which is slightly shorter than expected for a MS galaxy at this redshift. The CO luminosity relative to the total infrared luminosity suggests a MS-like activity when we assume a galactic conversion factor and a low transition ratio. The SFR of Astarte is on the same order when different attenuation laws are used, unlike its stellar mass, which increases when shallow attenuation laws are used (∼1 × 1011 M⊙ assuming a Calzetti relation, versus ∼4 × 1011 M⊙ assuming a shallow attenuation law). We discuss these properties and suggest that Astarte might be experiencing a recent decrease in star formation activity and is quenching through the MS following a starburst epoch.


2020 ◽  
Vol 643 ◽  
pp. A78
Author(s):  
Juan Molina ◽  
Edo Ibar ◽  
Nicolás Godoy ◽  
Andrés Escala ◽  
Tomonari Michiyama ◽  
...  

Context. Spatially resolved observations of the ionized and molecular gas are critical for understanding the physical processes that govern the interstellar medium (ISM) in galaxies. The observation of starburst systems is also important as they present extreme gas conditions that may help to test different ISM models. However, matched resolution imaging at ∼kpc scales for both ISM gas phases are usually scarce, and the ISM properties of starbursts still remain poorly understood. Aims. We aim to study the morpho-kinematic properties of the ionized and molecular gas in three dusty starburst galaxies at z = 0.12−0.17 to explore the relation between molecular ISM gas phase dynamics and the star-formation activity. Methods. We employ two-dimensional dynamical modelling to analyse Atacama Large Millimeter/submillimiter Array CO(1–0) and seeing-limited Spectrograph for INtegral Field Observations in the Near Infrared Paschen-α (Paα) observations, tracing the molecular and ionized gas morpho-kinematics at ∼kpc-scales. We use a dynamical mass model, which accounts for beam-smearing effects, to constrain the CO-to-H2 conversion factor and estimate the molecular gas mass content. Results. One starburst galaxy shows irregular morphology, which may indicate a major merger, while the other two systems show disc-like morpho-kinematics. The two disc-like starbursts show molecular gas velocity dispersion values comparable with those seen in local luminous and ultra luminous infrared galaxies but in an ISM with molecular gas fraction and surface density values in the range of the estimates reported for local star-forming galaxies. We find that these molecular gas velocity dispersion values can be explained by assuming vertical pressure equilibrium. We also find that the star-formation activity, traced by the Paα emission line, is well correlated with the molecular gas content, suggesting an enhanced star-formation efficiency and depletion times of the order of ∼0.1−1 Gyr. We find that the star-formation rate surface density (ΣSFR) correlates with the ISM pressure set by self-gravity (Pgrav) following a power law with an exponent close to 0.8. Conclusions. In dusty disc-like starburst galaxies, our data support the scenario in which the molecular gas velocity dispersion values are driven by the ISM pressure set by self-gravity and are responsible for maintaining the vertical pressure balance. The correlation between ΣSFR and Pgrav suggests that, in these dusty starbursts galaxies, the star-formation activity arises as a consequence of the ISM pressure balance.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Robert Feldmann

AbstractObservations of the interstellar medium are key to deciphering the physical processes regulating star formation in galaxies. However, observational uncertainties and detection limits can bias the interpretation unless carefully modeled. Here I re-analyze star formation rates and gas masses of a representative sample of nearby galaxies with the help of multi-dimensional Bayesian modeling. Typical star forming galaxies are found to lie in a ‘star forming plane’ largely independent of their stellar mass. Their star formation activity is tightly correlated with the molecular and total gas content, while variations of the molecular-gas-to-star conversion efficiency are shown to be significantly smaller than previously reported. These data-driven findings suggest that physical processes that modify the overall galactic gas content, such as gas accretion and outflows, regulate the star formation activity in typical nearby galaxies, while a change in efficiency triggered by, e.g., galaxy mergers or gas instabilities, may boost the activity of starbursts.


Sign in / Sign up

Export Citation Format

Share Document