scholarly journals Kinematics of F to M Supergiants in the 30 Dor and Shapley II Regions of the Large Magellanic Cloud

1999 ◽  
Vol 190 ◽  
pp. 389-390
Author(s):  
E. Maurice ◽  
N. Martin ◽  
G. Testor ◽  
M. C. Lortet

Accurate radial velocities have been obtained with the CORAVEL photoelectric scanner at ESO, La Silla, for 36 F-M supergiants in the 30 Dor and Shapley II regions of the LMC (5h20m < RA(2000) < 5h50m, −70°09′ < Dec (2000) < −68°30′). On the basis of these data, we revisit the content and spatial extent of the four kinematical groups of F-M supergiants discovered in this area by Prévot et al. 1989. Each is the oldest part of a larger star forming region, recognized by young HII regions or CO clouds, and/or a surrounding Hα + [NII] superbubble. We discuss various gas tracers including the interstellar sodium and calcium lines.

Galaxies ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 88 ◽  
Author(s):  
Paul A. Crowther

A review of the properties of the Tarantula Nebula (30 Doradus) in the Large Magellanic Cloud is presented, primarily from the perspective of its massive star content. The proximity of the Tarantula and its accessibility to X-ray through radio observations permit it to serve as a Rosetta Stone amongst extragalactic supergiant HII regions since one can consider both its integrated characteristics and the individual properties of individual massive stars. Recent surveys of its high mass stellar content, notably the VLT FLAMES Tarantula Survey (VFTS), are reviewed, together with VLT/MUSE observations of the central ionizing region NGC 2070 and HST/STIS spectroscopy of the young dense cluster R136, provide a near complete Hertzsprung-Russell diagram of the region, and cumulative ionizing output. Several high mass binaries are highlighted, some of which have been identified from a recent X-ray survey. Brief comparisons with the stellar content of giant HII regions in the Milky Way (NGC 3372) and Small Magellanic Cloud (NGC 346) are also made, together with Green Pea galaxies and star forming knots in high-z galaxies. Finally, the prospect of studying massive stars in metal poor galaxies is evaluated.


1966 ◽  
Vol 19 (3) ◽  
pp. 343 ◽  

The 21 cm hydrogen-line data from a survey of the Large Magellanic Oloud with a 14',5 aerial beam have been simplified into distributions of intensities and radial velocities at profile peaks. Fifty-two large HI complexes of mean diameter 575 pc, density I hydrogen atom per cm3, and mass 4 X 106M o have been delineated. The study of the correlation between optically visible Population I components, such as HII regions and supergiant OB stars, and the neutral hydrogen has been greatly extended.


1998 ◽  
Vol 15 (1) ◽  
pp. 128-131 ◽  
Author(s):  
Miroslav D. Filipović ◽  
Paul A. Jones ◽  
Graeme L. White ◽  
Raymond F. Haynes

AbstractWe present a comparison between the latest Parkes radio surveys (Filipović et al. 1995, 1996, 1997) and Hα surveys of the Magellanic Clouds (Kennicutt & Hodge 1986). We have found 180 discrete sources in common for the Large Magellanic Cloud (LMC) and 40 in the field of the Small Magellanic Cloud (SMC). Most of these sources (95%) are HII regions and supernova remnants (SNRs). A comparison of the radio and Hα flux densities shows a very good correlation and we note that many of the Magellanic Clouds SNRs are embedded in HII regions.


2019 ◽  
Vol 209 ◽  
pp. 01021
Author(s):  
María Isabel Bernardos ◽  
María Benito ◽  
Fabio Iocco ◽  
Salvatore Mangano ◽  
Olga Sergijenko ◽  
...  

The Large Magellanic Cloud (LMC) is a spiral galaxy, satellite of the Milky way with a high star formation activity. It represents a unique laboratory for studying an extended and spatially resolved star-forming galaxy through gamma-ray observatories. Therefore, the LMC survey is one of the key science projects for the Cherenkov Telescope Array (CTA), the next-generation ground-based gamma-ray observatory. In this document we present the work performed over the last year by the CTA working group dedicated to the LMC, in order to offer a first characterization of the LMC at TeV energies. We have performed detectability forecasts based on the expected CTA performance for all sources in the region of interest of the LMC with known emission at GeV energies and above. Based on previous observations made by Fermi-LAT and H.E.S.S. we have characterized all point sources, extended sources and diffuse emission produced by cosmic-ray propagation, extrapolating their spectra to CTA energies. Finally, we have characterized the signal expected by different annihilation mechanisms of dark matter (DM) particles within the LMC, computing the detection sensitivity curve for this target in the cross-section-to-mass plane.


2018 ◽  
Vol 14 (S344) ◽  
pp. 118-121
Author(s):  
Rhorom Priyatikanto ◽  
Mochamad Ikbal Arifyanto ◽  
Rendy Darma ◽  
Aprilia ◽  
Muhamad Irfan Hakim

AbstractGlobal history of star or cluster formation in the Large Magellanic Cloud (LMC) has been the center of interest in several studies as it is thought to be influenced by tidal interaction with the Small Magellanic Cloud and even the Milky Way. This study focus on the formation history of the LMC in relation with the context of binary star clusters population, the apparent binary fraction (e.g., percentage of cluster pairs) in different epoch were calculated and analyzed. From the established distributions, it can be deduced that the binary clusters tend to be young (∽ 100 Myr) while their locations coincide with the locations of star forming complexes. There is an indication that the binary fraction increases as the rise of star formation rate in the last millions years. In the LMC, the increase of binary fraction at age ∽ 100 Myr can be associated to the last episode of close encounter with the Small Magellanic Cloud at ∽ 150 Myr ago. This observational evidence supports the theory of binary cluster formation through the fission of molecular cloud where the encounter between galaxies enhanced the clouds velocity dispersion which in turn increased the probability of cloud-cloud collisions that produce binary clusters.


1999 ◽  
Vol 190 ◽  
pp. 377-378
Author(s):  
A. Moneti ◽  
R. J. Laureijs ◽  
J.M. van der Hulst ◽  
F. Israel ◽  
P.P. van der Werf

With the detection of strong PAH features and H2 emission in selected knots of the N159, N11A, and 30 Dor regions in the LMC, we present the first results of a study that is part of a coordinated Guaranteed Time ISO programme to investigate star formation in the Magellanic Clouds. The PAH features have different ratios than the ones in Galactic reflection nebulae.


2019 ◽  
Vol 631 ◽  
pp. L12 ◽  
Author(s):  
Yoko Okada ◽  
Ronan Higgins ◽  
Volker Ossenkopf-Okada ◽  
Cristian Guevara ◽  
Jürgen Stutzki ◽  
...  

Context. [13C II] observations in several Galactic sources show that the fine-structure [12C II] emission is often optically thick (the optical depths around 1 to a few). Aims. Our goal was to test whether this also affects the [12C II] emission from nearby galaxies like the Large Magellanic Cloud (LMC). Methods. We observed three star-forming regions in the LMC with upGREAT on board SOFIA at the frequency of the [C II] line. The 4 GHz bandwidth covers all three hyperfine lines of [13C II] simultaneously. For the analysis, we combined the [13C II] F = 1−0 and F = 1−1 hyperfine components as they do not overlap with the [12C II] line in velocity. Results. Three positions in N159 and N160 show an enhancement of [13C II] compared to the abundance-ratio-scaled [12C II] profile. This is likely due to the [12C II] line being optically thick, supported by the fact that the [13C II] line profile is narrower than [12C II], the enhancement varies with velocity, and the peak velocity of [13C II] matches the [O I] 63 μm self-absorption. The [12C II] line profile is broader than expected from a simple optical depth broadening of the [13C II] line, supporting the scenario of several PDR components in one beam having varying [12C II] optical depths. The derived [12C II] optical depth at three positions (beam size of 14″, corresponding to 3.4 pc) is 1−3, which is similar to values observed in several Galactic sources shown in previous studies. If this also applies to distant galaxies, the [C II] intensity will be underestimated by a factor of approximately 2.


2019 ◽  
Vol 621 ◽  
pp. A62 ◽  
Author(s):  
Yoko Okada ◽  
Rolf Güsten ◽  
Miguel Angel Requena-Torres ◽  
Markus Röllig ◽  
Jürgen Stutzki ◽  
...  

Aims. The aim of our study is to investigate the physical properties of the star-forming interstellar medium (ISM) in the Large Magellanic Cloud (LMC) by separating the origin of the emission lines spatially and spectrally. The LMC provides a unique local template to bridge studies in the Galaxy and high redshift galaxies because of its low metallicity and proximity, enabling us to study the detailed physics of the ISM in spatially resolved individual star-forming regions. Following Okada et al. (Okada, Y., Requena-Torres, M. A., Güsten, R., et al. 2015, A&A, 580, A54), we investigate different phases of the ISM traced by carbon-bearing species in four star-forming regions in the LMC, and model the physical properties using the KOSMA-τ PDR model. Methods. We mapped 3–13 arcmin2 areas in 30 Dor, N158, N160, and N159 along the molecular ridge of the LMC in [C II] 158 μm with GREAT on board SOFIA. We also observed the same area with CO(2-1) to (6-5), 13CO(2-1) and (3-2), [C I] 3P1–3P0 and 3P2–3P1 with APEX. For selected positions in N159 and 30 Dor, we observed [O I] 145 μm and [O I] 63 μm with upGREAT. All spectra are velocity resolved. Results. In all four star-forming regions, the line profiles of CO, 13CO, and [C I] emission are similar, being reproduced by a combination of Gaussian profiles defined by CO(3-2), whereas [C II] typically shows wider line profiles or an additional velocity component. At several positions in N159 and 30 Dor, we observed the velocity-resolved [O I] 145 and 63 μm lines for the first time. At some positions, the [O I] line profiles match those of CO, at other positions they are more similar to the [C II] profiles. We interpret the different line profiles of CO, [C II] and [O I] as contributions from spatially separated clouds and/or clouds in different physical phases, which give different line ratios depending on their physical properties. We modeled the emission from the CO, [C I], [C II], and [O I] lines and the far-infrared continuum emission using the latest KOSMA-τ PDR model, which treats the dust-related physics consistently and computes the dust continuum SED together with the line emission of the chemical species. We find that the line and continuum emissions are not well-reproduced by a single clump ensemble. Toward the CO peak at N159 W, we propose a scenario that the CO, [C II], and [O I] 63 μm emission are weaker than expected because of mutual shielding among clumps.


1984 ◽  
Vol 88 ◽  
pp. 265-268
Author(s):  
E. Maurice ◽  
N. Martin ◽  
L. Prévot ◽  
E. Rebeirot

Kinematical studies of the Magellanic Clouds began more than half a century ago, when Wilson, in 1918, first interpreted the gradient of the 17 radial velocities of gazeous nebulae in the Large Cloud in terms of rotation. In the case of the Small Magellanic Cloud, the first real attempt to understand the velocity field of this galaxy was performed by the Radcliffe astronomers (Feast et al., 1960, 1961). Their study was based on radial velocities of 40 stars and 13 HII regions.With the installation by ESO of an objective-prisme astrograph in South Africa, in 1961, and then of several larger telescopes in Chile in 1968, the number of measurements significantly increased for Magellanic objects, in particular in the SMC. In this galaxy, the objective-prism observations resulted in about 100 stellar radial velocities (Florsch, 1972a) of probable members. A compilation by Maurice (1979) of all then known slit-spectrograph radial velocities gave velocities for 80 supergiants, 35 HII regions and 12 planetary nebulae.


Sign in / Sign up

Export Citation Format

Share Document