scholarly journals ISO Observations of Compact HII Regions in the Large Magellanic Cloud

1999 ◽  
Vol 190 ◽  
pp. 377-378
Author(s):  
A. Moneti ◽  
R. J. Laureijs ◽  
J.M. van der Hulst ◽  
F. Israel ◽  
P.P. van der Werf

With the detection of strong PAH features and H2 emission in selected knots of the N159, N11A, and 30 Dor regions in the LMC, we present the first results of a study that is part of a coordinated Guaranteed Time ISO programme to investigate star formation in the Magellanic Clouds. The PAH features have different ratios than the ones in Galactic reflection nebulae.

1991 ◽  
Vol 148 ◽  
pp. 15-23 ◽  
Author(s):  
B. E. Westerlund

A vast amount of observational data concerning the structure and kinematics of the Magellanic Clouds is now available. Many basic quantities (e.g. distances and geometry) are, however, not yet sufficiently well determined. Interactions between the Small Magellanic Cloud (SMC), the Large Magellanic Cloud (LMC) and our Galaxy have dominated the evolution of the Clouds, causing bursts of star formation which, together with stochastic self-propagating star formation, produced the observed structures. In the youngest generation in the LMC it is seen as an intricate pattern imitating a fragmented spiral structure. In the SMC much of the fragmentation is along the line of sight complicating the reconstruction of its history. The violent events in the past are also recognizable in complex velocity patterns which make the analysis of the kinematics of the Clouds difficult.


1998 ◽  
Vol 15 (1) ◽  
pp. 128-131 ◽  
Author(s):  
Miroslav D. Filipović ◽  
Paul A. Jones ◽  
Graeme L. White ◽  
Raymond F. Haynes

AbstractWe present a comparison between the latest Parkes radio surveys (Filipović et al. 1995, 1996, 1997) and Hα surveys of the Magellanic Clouds (Kennicutt & Hodge 1986). We have found 180 discrete sources in common for the Large Magellanic Cloud (LMC) and 40 in the field of the Small Magellanic Cloud (SMC). Most of these sources (95%) are HII regions and supernova remnants (SNRs). A comparison of the radio and Hα flux densities shows a very good correlation and we note that many of the Magellanic Clouds SNRs are embedded in HII regions.


1999 ◽  
Vol 186 ◽  
pp. 60-60
Author(s):  
A.M. Yoshizawa ◽  
M. Noguchi

The system of the Magellanic Clouds is considered to be dynamically interacting among themselves and with our Galaxy. This interaction is thought to be the cause of many complicated features seen in the Magellanic Clouds and the Magellanic Stream (see Westerlund 1990, A&AR, 2, 27). In order to better understand the formation and evolution of the Magellanic System, we carry out realistic N-body simulations of the tidal distortion of the Small Magellanic Cloud (SMC) due to our Galaxy and the Large Magellanic Cloud (LMC).


2008 ◽  
Vol 4 (S256) ◽  
pp. 250-255
Author(s):  
Dimitrios A. Gouliermis

AbstractThe Magellanic Clouds offer a unique variety of star forming regions seen as bright nebulae of ionized gas, related to bright young stellar associations. Nowadays, observations with the high resolving efficiency of the Hubble Space Telescope allow the detection of the faintest infant stars, and a more complete picture of clustered star formation in our dwarf neighbors has emerged. I present results from our studies of the Magellanic Clouds, with emphasis in the young low-mass pre-main sequence populations. Our data include imaging with the Advanced Camera for Surveys of the association LH 95 in the Large Magellanic Cloud, the deepest observations ever taken with HST of this galaxy. I discuss our findings in terms of the initial mass function, which we constructed with an unprecedented completeness down to the sub-solar regime, as the outcome of star formation in the low-metallicity environment of the LMC.


2006 ◽  
Vol 2 (S237) ◽  
pp. 423-423
Author(s):  
H. Hatano ◽  
R. Kadowaki ◽  
D. Kato ◽  
S. Sato ◽  

AbstractA near-infrared survey of the Magellanic Clouds has been carried out with IRSF/SIRIUS. As a part of the results, we present a study of triggered star formation in N11 in the LMC.


Author(s):  
Jacob Ward ◽  
Joana Oliveira ◽  
Jacco van Loon ◽  
Marta Sewilo

AbstractAt distances of ~50 kpc and ~60 kpc for the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) respectively the Magellanic Clouds present us with a unique opportunity to study star formation in environments outside our own galaxy. Through Spitzer and Herschel photometry and spectroscopy, samples of Young Stellar Objects (YSOs) have been selected and spectroscpically confirmed in the Magellanic Clouds. Here we present some of the key results of our SINFONI K-band observations towards massive YSOs in the Magellanic Clouds. We resolve a number of Spitzer sources into multiple, previously unresolved, components and our analysis of emission lines suggest higher accretion rates and different disc properties compared with massive YSOs in the Milky Way.


1974 ◽  
Vol 59 ◽  
pp. 107-108
Author(s):  
J. A. Graham

The Magellanic Clouds are well known as being very suitable for observing the various stages of stellar evolution. During the last few years, I have been studying the RR Lyrae variable stars in each of the two Clouds. Some first results were reported at IAU Colloquium No. 21 in 1972 (Graham, 1973). Here, I would like to update these results on the basis of more recent data and to comment on some of the characteristics of the field RR Lyrae stars in each system. Periods and light curves are now available for 63 RR Lyrae stars in a 1° x 1.3° field centered on the cluster NGC 1783 in the Large Magellanic Cloud (LMC) and for 62 stars in a 1° x 1.3° field centered on the cluster NGC 121 in the Small Magellanic Cloud (SMC). Both ab and c type variables are represented and, viewed individually, the Cloud RR Lyraes are identical in characteristics to those known in our Galaxy. Studied as groups, however, there are small but significant differences between the RR Lyrae stars in each system. The following four specific features seem to be emerging from the study.


1999 ◽  
Vol 192 ◽  
pp. 72-78
Author(s):  
Jason Harris ◽  
Dennis Zaritsky ◽  
Eva K. Grebel ◽  
Ian Thompson

We are developing an algorithm to determine the star formation history (SFH) of a mixed stellar population. We will apply the algorithm to hundreds of regions in our Magellanic Clouds Photometric Survey data and reconstruct the spatially resolved star formation history of the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). In this paper, we demonstrate the algorithm on a typical region in the LMC, focussing on the obstacles and challenges facing us in attempting to reliably extract the SFH from photometric data.


1999 ◽  
Vol 190 ◽  
pp. 366-367 ◽  
Author(s):  
Wolfgang Brandner ◽  
Eva K. Grebel ◽  
Hans Zinnecker ◽  
Bernhard Brandl

We present first results of a survey for pre-main-sequence stars in the Magellanic Clouds. Our search concentrated on NGC 346, the most prominent OB association in the Small Magellanic Cloud, and on the 30 Dor starburst cluster in the Large Magellanic Cloud. The identification of the young low- to intermediate-mass stellar population in the SMC and LMC allows us to study whether or not these populations formed simultaneously with high-mass stars, and to what an extent lower metallicity affects the low-mass IMF. We can also evaluate the duration of star formation in a starburst region.


2008 ◽  
Vol 4 (S256) ◽  
pp. 227-232
Author(s):  
J. A. Green ◽  
J. L. Caswell ◽  
G. A. Fuller ◽  
A. Avison ◽  
S. L. Breen ◽  
...  

AbstractThe results of the first complete survey for 6668-MHz CH3OH and 6035-MHz excited-state OH masers in the Small and Large Magellanic Clouds are presented. A new 6668-MHz CH3OH maser in the Large Magellanic Cloud has been detected towards the star-forming region N 160a, together with a new 6035-MHz excited-state OH maser detected towards N 157a. We also re-observed the previously known 6668-MHz CH3OH masers and the single known 6035-MHz OH maser. Neither maser transition was detected above ~0.13 Jy in the Small Magellanic Cloud. All observations were initially made using the CH3OH Multibeam (MMB) survey receiver on the 64-m Parkes radio telescope as part of the overall MMB project. Accurate positions were measured with the Australia Telescope Compact Array (ATCA). In a comparison of the star formation maser populations in the Magellanic Clouds and our Galaxy, the LMC maser populations are demonstrated to be smaller than their Milky Way counterparts. CH3OH masers are under-abundant by a factor of ~50, whilst OH and H2O masers are a factor of ~10 less abundant than our Galaxy.


Sign in / Sign up

Export Citation Format

Share Document