scholarly journals Diffuse Interstellar Bands – The Unidentified Part of the Interstellar Absorption Spectrum

1989 ◽  
Vol 135 ◽  
pp. 67-86 ◽  
Author(s):  
Jacek Krełowski

The unidentified (since 1921) diffuse interstellar bands (DIBs) are discussed together with their relations to other interstellar absorptions sucn as: continuous extinction, polarization and atomic or molecular absorption lines. It is shown that DIBs do not form the absorption spectrum of one agent, but probably of several (3 or more). DIBs as well as other interstellar absorptions are usually formed in several clouds along a line-of-sight. Thus, they suffer Doppler splitting; the first high resolution profiles free of the latter effect are described. Since single interstellar clouds may differ not only in radial velocities but also in many physical (optical) parameters, the observed interstellar absorptions are ill-defined averages over all clouds situated along any line-of-sight. It is of basic importance to determine not only the single cloud profiles of diffuse bands, but also their relations to other interstellar absorptions in the same clouds. Intensity ratios of DIBs are shown to be sensitive to the shapes of extinction curves, depletion patterns of elements and molecular abundances in the considered clouds. The sensitivity of the DIBs to the variation in polarization is less documented but probably also present. Thus the diffuse lines are presented as the unidentified part of the absorption spectrum of interstellar matter. Their identification depends on the determination of their relations to other interstellar absorptions which must be determined precisely.

2013 ◽  
Vol 9 (S297) ◽  
pp. 103-105 ◽  
Author(s):  
N. L. J. Cox ◽  
J. Cami ◽  
L. Kaper ◽  
B. H. Foing ◽  
P. Ehrenfreund ◽  
...  

AbstractWe present the first results of an exploratory VLT/X-Shooter survey of near-infrared diffuse interstellar bands (DIBs) in diffuse to translucent interstellar clouds. These observations confirm the presence of recently discoved NIR DIBs and provide more accurate rest wavelengths and line widths. Example spectra are shown for the reddened, AV ~ 10 mag, line-of-sight towards the distant binary system 4U 1907+09.


2005 ◽  
Vol 13 ◽  
pp. 808-810
Author(s):  
Daniel E. Welty

AbstractWe briefly note several current topics concerning the properties of interstellar clouds for which high-resolution optical spectra play a significant role: (1) the recognition and characterization of small-scale (sub-pc) structure in both atomic and molecular gas; (2) the discovery of variations in the 7Li/6Li isotopic ratio in the nearby Galactic ISM; (3) the determination of atomic and molecular abundances and physical conditions for heavily reddened (“translucent”) Galactic sightlines; and (4) studies of interstellar clouds in the LMC and SMC.


Author(s):  
F.A. Ponce ◽  
H. Hikashi

The determination of the atomic positions from HRTEM micrographs is only possible if the optical parameters are known to a certain accuracy, and reliable through-focus series are available to match the experimental images with calculated images of possible atomic models. The main limitation in interpreting images at the atomic level is the knowledge of the optical parameters such as beam alignment, astigmatism correction and defocus value. Under ordinary conditions, the uncertainty in these values is sufficiently large to prevent the accurate determination of the atomic positions. Therefore, in order to achieve the resolution power of the microscope (under 0.2nm) it is necessary to take extraordinary measures. The use of on line computers has been proposed [e.g.: 2-5] and used with certain amount of success.We have built a system that can perform operations in the range of one frame stored and analyzed per second. A schematic diagram of the system is shown in figure 1. A JEOL 4000EX microscope equipped with an external computer interface is directly linked to a SUN-3 computer. All electrical parameters in the microscope can be changed via this interface by the use of a set of commands. The image is received from a video camera. A commercial image processor improves the signal-to-noise ratio by recursively averaging with a time constant, usually set at 0.25 sec. The computer software is based on a multi-window system and is entirely mouse-driven. All operations can be performed by clicking the mouse on the appropiate windows and buttons. This capability leads to extreme friendliness, ease of operation, and high operator speeds. Image analysis can be done in various ways. Here, we have measured the image contrast and used it to optimize certain parameters. The system is designed to have instant access to: (a) x- and y- alignment coils, (b) x- and y- astigmatism correction coils, and (c) objective lens current. The algorithm is shown in figure 2. Figure 3 shows an example taken from a thin CdTe crystal. The image contrast is displayed for changing objective lens current (defocus value). The display is calibrated in angstroms. Images are stored on the disk and are accessible by clicking the data points in the graph. Some of the frame-store images are displayed in Fig. 4.


2021 ◽  
Vol 11 (12) ◽  
pp. 5493
Author(s):  
Andrzej Gawor ◽  
Andrii Tupys ◽  
Anna Ruszczyńska ◽  
Ewa Bulska

Nowadays growing attention is paid to the control of fluorine content in samples of biological origin as it is present in the form of various biologically active organic compounds. Due to the chemically-rich matrix of biological tissues, the determination of fluorine becomes a very difficult task. Furthermore, a required complex sample preparation procedure makes the determination of the low contents of F by ion chromatography UV-Vis or ion-selective electrodes not possible. High-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) seems to be the best option for this purpose due to its high robustness to matrix interferences, especially in the presence of carefully selected modifiers. In this work the possibility of quantitative F determination in water and animal tissues was examined by measuring the molecular absorption of gallium monofluoride (GaF) at 211.248 nm with the use of a commercially available HR-CS GF MAS system. Experimental conditions for the sensitive and precise determination of fluorine were optimized, including the time/temperature program as well as addition of gallium and modifier mixture in combined mode. Under these conditions the fluoride present in the sample was stabilized up to 600 °C, and the optimum vaporization temperature for GaF was 1540 °C. Palladium and zirconium deposited onto the graphite surface served as solid modifiers; sodium acetate and ruthenium modifiers were added directly to the sample. The limit of detection and the characteristic mass of the method were 0.43 μg/L and 8.7 pg, respectively. The proposed procedure was validated by the use of certified reference materials (CRMs) of lake water and animal tissue; the acceptable recovery was obtained, proving that it can be applied for samples with a similar matrix.


Sign in / Sign up

Export Citation Format

Share Document