Computer-Assisted High-Re Solution TEM

Author(s):  
F.A. Ponce ◽  
H. Hikashi

The determination of the atomic positions from HRTEM micrographs is only possible if the optical parameters are known to a certain accuracy, and reliable through-focus series are available to match the experimental images with calculated images of possible atomic models. The main limitation in interpreting images at the atomic level is the knowledge of the optical parameters such as beam alignment, astigmatism correction and defocus value. Under ordinary conditions, the uncertainty in these values is sufficiently large to prevent the accurate determination of the atomic positions. Therefore, in order to achieve the resolution power of the microscope (under 0.2nm) it is necessary to take extraordinary measures. The use of on line computers has been proposed [e.g.: 2-5] and used with certain amount of success.We have built a system that can perform operations in the range of one frame stored and analyzed per second. A schematic diagram of the system is shown in figure 1. A JEOL 4000EX microscope equipped with an external computer interface is directly linked to a SUN-3 computer. All electrical parameters in the microscope can be changed via this interface by the use of a set of commands. The image is received from a video camera. A commercial image processor improves the signal-to-noise ratio by recursively averaging with a time constant, usually set at 0.25 sec. The computer software is based on a multi-window system and is entirely mouse-driven. All operations can be performed by clicking the mouse on the appropiate windows and buttons. This capability leads to extreme friendliness, ease of operation, and high operator speeds. Image analysis can be done in various ways. Here, we have measured the image contrast and used it to optimize certain parameters. The system is designed to have instant access to: (a) x- and y- alignment coils, (b) x- and y- astigmatism correction coils, and (c) objective lens current. The algorithm is shown in figure 2. Figure 3 shows an example taken from a thin CdTe crystal. The image contrast is displayed for changing objective lens current (defocus value). The display is calibrated in angstroms. Images are stored on the disk and are accessible by clicking the data points in the graph. Some of the frame-store images are displayed in Fig. 4.

1990 ◽  
Vol 121 ◽  
pp. 279-288
Author(s):  
C. Fröhlich ◽  
T. Toutain ◽  
R.M. Bonnet ◽  
A.V. Bruns ◽  
J.P. Delaboudinière ◽  
...  

AbstractIPHIR (Interplanetary Helioseismology by IRradiance measurements) is a solar irradiance experiment on the USSR planetary mission PHOBOS to Mars and its satellite Phobos. The experiment was built by an international consortium including PMOD/WRC, LPSP, SSD/ESA, KrAO and CRIP. The sensor is a three channel sunphotometer (SPM) which measures the solar spectral irradiance at 335, 500 and 865 nm with a precision of better than 1 part-per-million (ppm). It is the first experiment dedicated to the investigation of solar oscillations from space. The results presented here are from a first evaluation of data gathered during 160 days of the cruise phase of PHOBOS II, launched on July, 12th 1988. The long uninterrupted observation produces a spectrum of the solar p-mode oscillations in the 5-minute range with a very high signal-to-noise ratio, which allows an accurate determination of frequencies and line shapes of these modes.


2021 ◽  
Vol 42 (6) ◽  
Author(s):  
Yan Wu

A valid method for trace silver (Ag) detection in geological samples was developed in this study using aerosol dilution inductively coupled plasma-mass spectrometry after extraction with inverse aqua regia. This was proposed primarily to reduce the interference from Nb and Zr during mass spectrometric measurements. Almost 93% of Nb and Zr was removed after the extraction. By mixing an appropriate amount of Ar with the sample aerosol using an aerosol dilution system prior to plasma, the residual Nb oxides and Zr oxides or hydroxides could be successfully removed. The relative yields of the interfering oxides and hydroxides were as low as 0.087% (NbO/Nb) and 0.013% (ZrOH/Zr), which were 3–5 times lower than those in the traditional mode without the addition of Ar. Moreover, the signal-to-noise ratio of Ag was five times higher than that in the traditional mode. The proposed method was applied to the determination of Ag in 68 standard reference materials (SRMs) of soil, sediment, and rock. The results for 47 of these geological SRMs were in good agreement with the reference values. The Ag levels in three SRMs (GSP-2 Granodiorite, STM-2, and SGR-1b) are being reported for the first time herein. For these SRMs, 10 separate aliquots of the sample were digested and analyzed over a period of three months, and analysis revealed that the determined values were reasonable. Thus, the proposed method shows significant potential for the accurate determination of trace Ag in various geological samples.


Author(s):  
A.F. de Jong ◽  
W.M.J. Coene ◽  
A.J. Koster

Measurement of electron-optical parameters in TEM is important for two reasons: a) for automatic correction of focus, astigmatism and beam-tilt misalignment (autotuning) and b) for the accurate determination of the phase-contrast transfer function (PCTF) which is needed for a correct interpretation of high-resolution electron microscopy (HREM) images. This paper addresses specifically methods adapted to reach the second goal, stressing accuracy rather than speed and robusteness.


2018 ◽  
Author(s):  
Leonardo Claudino ◽  
Sara J Hussain ◽  
Ethan R Buch ◽  
Leonardo G Cohen

AbstractOBJECTIVETranscranial magnetic stimulation (TMS) is extensively used in basic and clinical neuroscience. Previous work has shown substantial residual variability in TMS effects even despite use of on-line visual feedback monitoring of coil position. Here, we aimed to evaluate if off-line denoising of variability induced by neuronavigated coil position and orientation deviations can enhance detection of TMS effects.METHODSRetrospective modeling was used to denoise the impact of common neuronavigated coil position and rotation deviations during TMS experimental sessions on motor evoked potentials (MEP) to single pulse TMS.RESULTSNeuronavigated coil deviations explained approximately 44% of total MEP amplitude variability. Offline denoising led to a 136.71% improvement in the signal to noise ratio (SNR) of corticospinal excitability measurements. CONCLUSIONS: Offline modeling enhanced detection of TMS effects by removing variability introduced by neuronavigated coil deviations.SIGNIFICANCEThis approach could allow more accurate determination of TMS effects in cognitive and interventional neuroscience.HIGHLIGHTSCoil deviations impact TMS effects despite use of on-line neuronavigation feedback.Offline denoising of coil deviation impacts on TMS effects significantly reduced variability at trial level.Offline denoising also significantly improved overall SNR of TMS effects.


2021 ◽  
Vol 11 (12) ◽  
pp. 5508
Author(s):  
Fang Wang ◽  
Xuewu Fan ◽  
Hu Wang ◽  
Yue Pan ◽  
Yang Shen ◽  
...  

Optical instrumentation with reliable performance is essential for the research of exoplanet atmosphere characteristics. However, due to long distances and weak signals, exoplanets are difficult to be imaged by traditional optical systems. To this end, a novel optical system based on transit spectroscopy is proposed in this paper. On the basis of the principle of the transit-spectroscopy method and the astronomical parameters of observed targets, the optional parameter ranges of a dedicated optical system are analyzed. The transit signal-to-noise ratio (SNR) is introduced for the determination of telescope aperture and throughput. Furthermore, an example of the optical system with a space telescope and spectrometer is proposed according to the above optical index, which is proven to meet the performance requirements. The optical system is required to cover the wavelength of 0.5–8 m and the field of view (FOV) of 27.9′′ within the diffraction limit. The collecting aperture should be greater than 2 m, and spectral resolutions of two spectrometer channels should approximately be 100 (2–4 m) and 30 (4–8 m). The point-spread function (PSF) of each channel at the minimal wavelength should cover 2 pixels. The telescope and dichroic system provide diffraction-limited input beams with the required aperture, FOV, and wavelength for the spectrometer slits. The simulation results of the optical system show that the spectral resolutions of the dual-channel spectrometer were 111–200 and 43–94. The image points of the spectrometer in each wavelength were smaller than the Airy spot within the slit FOV, and the full width at half-maximum (FWHM) of PSF at λmin provided 2 pixels of 18 m sampling. The feasibility of the demonstrated optical parameters is proven by the design.


Author(s):  
K. Shibatomi ◽  
T. Yamanoto ◽  
H. Koike

In the observation of a thick specimen by means of a transmission electron microscope, the intensity of electrons passing through the objective lens aperture is greatly reduced. So that the image is almost invisible. In addition to this fact, it have been reported that a chromatic aberration causes the deterioration of the image contrast rather than that of the resolution. The scanning electron microscope is, however, capable of electrically amplifying the signal of the decreasing intensity, and also free from a chromatic aberration so that the deterioration of the image contrast due to the aberration can be prevented. The electrical improvement of the image quality can be carried out by using the fascionating features of the SEM, that is, the amplification of a weak in-put signal forming the image and the descriminating action of the heigh level signal of the background. This paper reports some of the experimental results about the thickness dependence of the observability and quality of the image in the case of the transmission SEM.


Author(s):  
R.D. Leapman ◽  
P. Rez ◽  
D.F. Mayers

Microanalysis by EELS has been developing rapidly and though the general form of the spectrum is now understood there is a need to put the technique on a more quantitative basis (1,2). Certain aspects important for microanalysis include: (i) accurate determination of the partial cross sections, σx(α,ΔE) for core excitation when scattering lies inside collection angle a and energy range ΔE above the edge, (ii) behavior of the background intensity due to excitation of less strongly bound electrons, necessary for extrapolation beneath the signal of interest, (iii) departures from the simple hydrogenic K-edge seen in L and M losses, effecting σx and complicating microanalysis. Such problems might be approached empirically but here we describe how computation can elucidate the spectrum shape.The inelastic cross section differential with respect to energy transfer E and momentum transfer q for electrons of energy E0 and velocity v can be written as


Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.


Author(s):  
M. G. R. Thomson

The variation of contrast and signal to noise ratio with change in detector solid angle in the high resolution scanning transmission electron microscope was discussed in an earlier paper. In that paper the conclusions were that the most favourable conditions for the imaging of isolated single heavy atoms were, using the notation in figure 1, either bright field phase contrast with β0⋍0.5 α0, or dark field with an annular detector subtending an angle between ao and effectively π/2.The microscope is represented simply by the model illustrated in figure 1, and the objective lens is characterised by its coefficient of spherical aberration Cs. All the results for the Scanning Transmission Electron Microscope (STEM) may with care be applied to the Conventional Electron Microscope (CEM). The object atom is represented as detailed in reference 2, except that ϕ(θ) is taken to be the constant ϕ(0) to simplify the integration. This is reasonable for θ ≤ 0.1 θ0, where 60 is the screening angle.


Author(s):  
Rudolf Oldenbourg

The recent renaissance of the light microsope is fueled in part by technological advances in components on the periphery of the microscope, such as the laser as illumination source, electronic image recording (video), computer assisted image analysis and the biochemistry of fluorescent dyes for labeling specimens. After great progress in these peripheral parts, it seems timely to examine the optics itself and ask how progress in the periphery facilitates the use of new optical components and of new optical designs inside the microscope. Some results of this fruitful reflection are presented in this symposium.We have considered the polarized light microscope, and developed a design that replaces the traditional compensator, typically a birefringent crystal plate, with a precision universal compensator made of two liquid crystal variable retarders. A video camera and digital image processing system provide fast measurements of specimen anisotropy (retardance magnitude and azimuth) at ALL POINTS of the image forming the field of view. The images document fine structural and molecular organization within a thin optical section of the specimen.


Sign in / Sign up

Export Citation Format

Share Document