scholarly journals Galaxy Formation in a Universe Dominated by Cold Dark Matter

1987 ◽  
Vol 117 ◽  
pp. 360-360
Author(s):  
Edmund Bertschinger

ABSTRACT The mass spectrum of bound baryonic systems (galaxies and globular clusters) is computed as a function of redshift in an Einstein-de Sitter (Ω=1) universe dominated by weakly interacting, cold dark matter. Baryons are assumed to fall into primordial density peaks in the cold particle distribution when the mass in the peaks exceeds the baryon Jeans mass. The distribution of peaks is computed using Gaussian statistics. As the universe expands the baryonic mass attached to a given peak increases because of infall (treated in a spherical approximation), and new peaks of lower amplitude become nonlinear. Globular clusters form first (by z∼40 if the galaxies represent a biased mass distribution). The remaining gas may be reheated to ∼10000 K if a few percent of globular cluster (or Pop. III) stars are very massive. Reheating increases the baryon Jeans mass and delays galaxy formation until z≲10. The present method reproduces the shape (but not the amplitude) of the Schechter galaxy mass function when merging of substructure is included in an approximate fashion.

2019 ◽  
Vol 491 (1) ◽  
pp. 1295-1310 ◽  
Author(s):  
Giulia Despali ◽  
Mark Lovell ◽  
Simona Vegetti ◽  
Robert A Crain ◽  
Benjamin D Oppenheimer

ABSTRACT We use high-resolution hydrodynamical simulations run with the EAGLE model of galaxy formation to study the differences between the properties of – and subsequently the lensing signal from – subhaloes of massive elliptical galaxies at redshift 0.2, in Cold and Sterile Neutrino (SN) Dark Matter models. We focus on the two 7 keV SN models that bracket the range of matter power spectra compatible with resonantly produced SN as the source of the observed 3.5 keV line. We derive an accurate parametrization for the subhalo mass function in these two SN models relative to cold dark matter (CDM), as well as the subhalo spatial distribution, density profile, and projected number density and the dark matter fraction in subhaloes. We create mock lensing maps from the simulated haloes to study the differences in the lensing signal in the framework of subhalo detection. We find that subhalo convergence is well described by a lognormal distribution and that signal of subhaloes in the power spectrum is lower in SN models with respect to CDM, at a level of 10–80 per cent, depending on the scale. However, the scatter between different projections is large and might make the use of power spectrum studies on the typical scales of current lensing images very difficult. Moreover, in the framework of individual detections through gravitational imaging a sample of ≃30 lenses with an average sensitivity of $M_{\rm {sub}} = 5 \times 10^{7}\, {\rm M}_{\odot}$ would be required to discriminate between CDM and the considered sterile neutrino models.


2019 ◽  
Vol 489 (1) ◽  
pp. 487-496 ◽  
Author(s):  
Boyan K Stoychev ◽  
Keri L Dixon ◽  
Andrea V Macciò ◽  
Marvin Blank ◽  
Aaron A Dutton

ABSTRACT We use 38 high-resolution simulations of galaxy formation between redshift 10 and 5 to study the impact of a 3 keV warm dark matter (WDM) candidate on the high-redshift Universe. We focus our attention on the stellar mass function and the global star formation rate and consider the consequences for reionization, namely the neutral hydrogen fraction evolution and the electron scattering optical depth. We find that three different effects contribute to differentiate warm and cold dark matter (CDM) predictions: WDM suppresses the number of haloes with mass less than few 109 M⊙; at a fixed halo mass, WDM produces fewer stars than CDM, and finally at halo masses below 109 M⊙, WDM has a larger fraction of dark haloes than CDM post-reionization. These three effects combine to produce a lower stellar mass function in WDM for galaxies with stellar masses at and below 107 M⊙. For z > 7, the global star formation density is lower by a factor of two in the WDM scenario, and for a fixed escape fraction, the fraction of neutral hydrogen is higher by 0.3 at z ∼ 6. This latter quantity can be partially reconciled with CDM and observations only by increasing the escape fraction from 23 per cent to 34 per cent. Overall, our study shows that galaxy formation simulations at high redshift are a key tool to differentiate between dark matter candidates given a model for baryonic physics.


1999 ◽  
Vol 183 ◽  
pp. 151-151
Author(s):  
C. Balland ◽  
J. Silk ◽  
R. Schaeffer

Some aspect of a semi-empirical model of galaxy formation is presented. In this model, galaxy formation proceeds through a series of rapid non-merging collisions with surrounding objects. For a given galaxy, a collision at an epoch z is characterized in terms of the fractional rate of change of binding energy induced by the tidal field [1]. The total rate of change of binding energy during the lifetime of the galaxy is computed in an Einstein-de Sitter universe, assuming that collisions continuously occur from birth up to the present day against a set of background galaxies with various masses. Rules for the formation of morphological types are then derived along the following (phenomenological) line: substantial or efficient collisions – characterized by a high rate of energy exchange – drive the formation of elliptical galaxies, whereas little or inefficient collisions lead to the formation of disks. These rules are coupled to the Press & Schechter mass function for a Cold Dark Matter spectrum normalized to the present distribution of X-ray clusters, allowing one to predict the evolution, for each morphological type, of number densities as a function of redshift. The model reproduces the observed present-day morphology-density relation [2] and predicts the formation redshift of field ellipticals to be z ≥ 2, while spirals form at z ≤ 1.5. Predictions are made for the redshift evolution of morphological populations in the field as well as in clusters (see [3] for more details).


Author(s):  
Jack Richings ◽  
Carlos Frenk ◽  
Adrian Jenkins ◽  
Andrew Robertson ◽  
Matthieu Schaller

Abstract We present a cosmological hydrodynamical simulation of a 1013 M⊙ galaxy group and its environment (out to 10 times the virial radius) carried out using the Eagle model of galaxy formation. Exploiting a novel technique to increase the resolution of the dark matter calculation independently of that of the gas, the simulation resolves dark matter haloes and subhaloes of mass 5 × 106 M⊙. It is therefore useful for studying the abundance and properties of the haloes and subhaloes targeted in strong lensing tests of the cold dark matter model. We estimate the halo and subhalo mass functions and discuss how they are affected both by the inclusion of baryons in the simulation and by the environment. We find that the halo and subhalo mass functions have lower amplitude in the hydrodynamical simulation than in its dark matter only counterpart. This reflects the reduced growth of haloes in the hydrodynamical simulation due to the early loss of gas by reionisation and galactic winds and, additionally, in the case of subhaloes, disruption by enhanced tidal effects within the host halo due to the presence of a massive central galaxy. The distribution of haloes is highly anisotropic reflecting the filamentary character of mass accretion onto the cluster. As a result, there is significant variation in the number of structures with viewing direction. The median number of structures near the centre of the halo, when viewed in projection, is reduced by a factor of two when baryons are included.


2020 ◽  
Vol 499 (2) ◽  
pp. 2648-2661
Author(s):  
Aaron A Dutton ◽  
Tobias Buck ◽  
Andrea V Macciò ◽  
Keri L Dixon ◽  
Marvin Blank ◽  
...  

ABSTRACT We use cosmological hydrodynamical galaxy formation simulations from the NIHAO project to investigate the response of cold dark matter (CDM) haloes to baryonic processes. Previous work has shown that the halo response is primarily a function of the ratio between galaxy stellar mass and total virial mass, and the density threshold above which gas is eligible to form stars, n[cm−3]. At low n all simulations in the literature agree that dwarf galaxy haloes are cuspy, but at high n ≳ 100 there is no consensus. We trace halo contraction in dwarf galaxies with n ≳ 100 reported in some previous simulations to insufficient spatial resolution. Provided the adopted star formation threshold is appropriate for the resolution of the simulation, we show that the halo response is remarkably stable for n ≳ 5, up to the highest star formation threshold that we test, n = 500. This free parameter can be calibrated using the observed clustering of young stars. Simulations with low thresholds n ≤ 1 predict clustering that is too weak, while simulations with high star formation thresholds n ≳ 5, are consistent with the observed clustering. Finally, we test the CDM predictions against the circular velocities of nearby dwarf galaxies. Low thresholds predict velocities that are too high, while simulations with n ∼ 10 provide a good match to the observations. We thus conclude that the CDM model provides a good description of the structure of galaxies on kpc scales provided the effects of baryons are properly captured.


2021 ◽  
Vol 503 (4) ◽  
pp. 5638-5645
Author(s):  
Gábor Rácz ◽  
István Szapudi ◽  
István Csabai ◽  
László Dobos

ABSTRACT The classical gravitational force on a torus is anisotropic and always lower than Newton’s 1/r2 law. We demonstrate the effects of periodicity in dark matter only N-body simulations of spherical collapse and standard Lambda cold dark matter (ΛCDM) initial conditions. Periodic boundary conditions cause an overall negative and anisotropic bias in cosmological simulations of cosmic structure formation. The lower amplitude of power spectra of small periodic simulations is a consequence of the missing large-scale modes and the equally important smaller periodic forces. The effect is most significant when the largest mildly non-linear scales are comparable to the linear size of the simulation box, as often is the case for high-resolution hydrodynamical simulations. Spherical collapse morphs into a shape similar to an octahedron. The anisotropic growth distorts the large-scale ΛCDM dark matter structures. We introduce the direction-dependent power spectrum invariant under the octahedral group of the simulation volume and show that the results break spherical symmetry.


2021 ◽  
Vol 502 (2) ◽  
pp. 2364-2380
Author(s):  
Nilanjan Banik ◽  
Jo Bovy ◽  
Gianfranco Bertone ◽  
Denis Erkal ◽  
T J L de Boer

ABSTRACT New data from the Gaia satellite, when combined with accurate photometry from the Pan-STARRS survey, allow us to accurately estimate the properties of the GD-1 stream. Here, we analyse the stellar density variations in the GD-1 stream and show that they cannot be due to known baryonic structures such as giant molecular clouds, globular clusters, or the Milky Way’s bar or spiral arms. A joint analysis of the GD-1 and Pal 5 streams instead requires a population of dark substructures with masses ≈107–$10^9 \ \rm {M}_{\odot }$. We infer a total abundance of dark subhaloes normalized to standard cold dark matter $n_{\rm sub}/n_{\rm sub, CDM} = 0.4 ^{+0.3}_{-0.2}$ (68 per cent), which corresponds to a mass fraction contained in the subhaloes $f_{\rm {sub}} = 0.14 ^{+0.11}_{-0.07} {{\ \rm per\ cent}}$, compatible with the predictions of hydrodynamical simulation of cold dark matter with baryons.


2021 ◽  
Vol 650 ◽  
pp. A113
Author(s):  
Margot M. Brouwer ◽  
Kyle A. Oman ◽  
Edwin A. Valentijn ◽  
Maciej Bilicki ◽  
Catherine Heymans ◽  
...  

We present measurements of the radial gravitational acceleration around isolated galaxies, comparing the expected gravitational acceleration given the baryonic matter (gbar) with the observed gravitational acceleration (gobs), using weak lensing measurements from the fourth data release of the Kilo-Degree Survey (KiDS-1000). These measurements extend the radial acceleration relation (RAR), traditionally measured using galaxy rotation curves, by 2 decades in gobs into the low-acceleration regime beyond the outskirts of the observable galaxy. We compare our RAR measurements to the predictions of two modified gravity (MG) theories: modified Newtonian dynamics and Verlinde’s emergent gravity (EG). We find that the measured relation between gobs and gbar agrees well with the MG predictions. In addition, we find a difference of at least 6σ between the RARs of early- and late-type galaxies (split by Sérsic index and u − r colour) with the same stellar mass. Current MG theories involve a gravity modification that is independent of other galaxy properties, which would be unable to explain this behaviour, although the EG theory is still limited to spherically symmetric static mass models. The difference might be explained if only the early-type galaxies have significant (Mgas ≈ M⋆) circumgalactic gaseous haloes. The observed behaviour is also expected in Λ-cold dark matter (ΛCDM) models where the galaxy-to-halo mass relation depends on the galaxy formation history. We find that MICE, a ΛCDM simulation with hybrid halo occupation distribution modelling and abundance matching, reproduces the observed RAR but significantly differs from BAHAMAS, a hydrodynamical cosmological galaxy formation simulation. Our results are sensitive to the amount of circumgalactic gas; current observational constraints indicate that the resulting corrections are likely moderate. Measurements of the lensing RAR with future cosmological surveys (such as Euclid) will be able to further distinguish between MG and ΛCDM models if systematic uncertainties in the baryonic mass distribution around galaxies are reduced.


Sign in / Sign up

Export Citation Format

Share Document