scholarly journals General-Relativistic MHD Simulation of Jets from a Geometrically Thin Accretion Disk Around a Schwarzschild Black Hole

2000 ◽  
Vol 195 ◽  
pp. 373-374
Author(s):  
S. I. Aoki ◽  
S. Koide ◽  
K. Shibata ◽  
T. Kudoh

We have performed a 2.5D, nonsteady, general-relativistic MHD simulation. Initially, we assumed a uniform magnetic field, a geometrically thin accretion disk rotating at Keplerian velocity, and a hydrostatic corona around a Schwarzschild black hole. We have investigated the formation mechanism of gas-pressure driven jets expected by Koide et al. and found the strong dependence of jet velocities Lorentz factor of jets) on the ratio of the density of the accretion disk to that of the corona (ρd/ρc), where γ2j - γj ∝ (ρd/ρc)0.75.

2000 ◽  
Vol 15 (19) ◽  
pp. 2979-2986 ◽  
Author(s):  
S. S. XULU

In this paper we obtain the energy distribution associated with the Ernst space–time (geometry describing Schwarzschild black hole in Melvin's magnetic universe) in Einstein's prescription. The first term is the rest-mass energy of the Schwarzschild black hole, the second term is the classical value for the energy of the uniform magnetic field and the remaining terms in the expression are due to the general relativistic effect. The presence of the magnetic field is found to increase the energy of the system.


1997 ◽  
Vol 163 ◽  
pp. 667-671
Author(s):  
Shinji Koide ◽  
Kazunari Shibata ◽  
Takahiro Kudoh

AbstractRecently, superluminal motions are observed not only from active galactic nuclei but also in our Galaxy. These phenomena are explained as relativistic jets propagating almost toward us with Lorentz factor more than 2. For the formation of such a relativistic jet, magnetically driven mechanism around a black hole is most promising. We have extended the 2.5D Newtonian MHD jet model (Shibata & Uchida 1986) to general relativistic regime. For this purpose, we have developed a general relativistic magnetohydrodynamic (GRMHD) numerical code and applied it to the simulation of the magnetized accretion disk around a black hole. We have found the formation of magnetically driven jets with 86 percent of light velocity (i.e. Lorentz factor ~ 2.0).


2007 ◽  
Vol 22 (10) ◽  
pp. 1875-1898 ◽  
Author(s):  
ORHAN DÖNMEZ

We investigate the special cases of the formation of shocks in the accretion disks around the nonrotating (Schwarzschild) black holes in cases where one or few stars perturb the disk. We model the structure of disk with a 2D fully general relativistic hydrodynamic code and investigate a variety of cases in which the stars interacting with the disk are captured at various locations. We have found the following results: (1) if the stars perturb the disk at nonsymmetric locations, a moving one-armed spiral shock wave is produced and it destroys the disk eventually; (2) if the disk is perturbed by a single star located close to the black hole, a standing shock wave is produced while the disk becomes an accretion tori; (3) if the disk is perturbed by stars at symmetric locations, moving two-armed spiral shock waves are produced while the disk reaches a steady state; (4) continuous injection of matter into the stable disk produces a standing shock wave behind the black hole. Our outcomes reinforce the view that different perturbations on the stable accretion disk carry out different types of shock waves which produce Quasi-Periodic Oscillation (QPO) phenomena in galactic black hole candidates and it is observed as a X-ray.


2006 ◽  
Vol 2 (S238) ◽  
pp. 367-368
Author(s):  
Keigo Fukumura ◽  
Masaaki Takahashi ◽  
Sachiko Tsuruta

AbstractWe study magnetohydrodynamic (MHD) standing shocks in ingoing plasmas in a black hole (BH) magnetosphere. We find that low or mid latitude (non-equatorial) standing MHD shocks are both physically possible, creating very hot and/or magnetized plasma regions close to the event horizon. We also investigate the effects of the poloidal magnetic field and the BH spin on the properties of shocks and show that both effects can quantitatively affect the MHD shock solutions. MHD shock formation can be a plausible mechanism for creating high energy radiation region above an accretion disk in AGNs.


Sign in / Sign up

Export Citation Format

Share Document