scholarly journals Silicon in the solar corona

1965 ◽  
Vol 23 ◽  
pp. 115-123
Author(s):  
K. G. Widing ◽  
J. R. Porter

Resonance lines of coronal ions of silicon are prominent in the spectral ranges 40–62 Å and 254–356 Å.An unexpected feature of the soft X-ray spectrum is the weakness or absence of the resonance lines of iron in ionization stages XI through XV.A second feature is the prominence of lines of the type (3d → 2p) relative to the resonance transitions (3p → 2s) in Li-like and Beryllium-like spectra. It is suggested that the upper levels (3d) are excited by quadrupole collisions from the ground 2s or 2s2levels.The intensity of the soft X-ray lines relative to the resonance lines in the 300 Å region seems to be more consistent with temperatures well above one million degrees than with temperatures as low as 700000°K, but the data are not adequate for a precise comparison. The relative intensity of the line emission from the various stages of silicon ionization may be interpreted as indicating that the ionization of silicon peaks in stages IX and X.The abundances of C, Mg, S, and Al relative to silicon do not seem to be greatly different from the chromospheric abundances reported by Pottasch or with the photospheric abundances.

2010 ◽  
Vol 518 ◽  
pp. A41 ◽  
Author(s):  
K. J. H. Phillips ◽  
K. M. Aggarwal ◽  
E. Landi ◽  
F. P. Keenan
Keyword(s):  

1971 ◽  
Vol 41 ◽  
pp. 181-181
Author(s):  
L. W. Acton ◽  
R. C. Catura ◽  
J. L. Culhane ◽  
A. J. Meyerott

A rocket payload is being prepared for the purpose of examining the spatial distribution of line emission from two important ions, Ovii and Neix, in the solar corona. The payload will contain the following integrated set of instruments.(1) A pair of X-ray spectrometers utilizing KAP crystals of approximately 100 cm2 area.(2) An optical aspect camera with a 1 Å bandpass H-α filter to measure the location of the field of view of the X-ray systems on the sun through out the rocket flight.(3) A collimated proportional counter spectrometer operating in the 3 to 15 keV range.


2017 ◽  
Vol 35 (3) ◽  
pp. 505-512 ◽  
Author(s):  
C. Kaur ◽  
S. Chaurasia ◽  
A.A. Pisal ◽  
A.K. Rossall ◽  
D.S. Munda ◽  
...  

AbstractIn this experiment, a comparative study of ion and X-ray emission from both a SiO2 aerogel foam and a quartz target is performed. The experiment is performed using Nd:glass laser system operated at laser energy up to 15 J with a pulse duration of 500 ps with focusable intensity of 1013–1014 W/cm2 on target. X-ray fluxes in different spectral ranges (soft and hard) are measured by using X-ray diodes covered with Al filters of thickness 5 µm (0.9–1.56 keV) and 20 µm (3.4–16 keV). A 2.5 times enhancement in soft X-ray flux (0.9–1.56 keV) and a decrease of 1.8 times in hard X rays (3.4–16 keV) for 50 mg/cc SiO2 aerogel foam is observed compared with the solid quartz. A decrease in the flux of the K-shell line emission spectrum of soft X rays is noticed in the case of the foam targets. The high-resolution K-shell spectra (He-like) of Si ions in both the cases are analyzed for the determination of plasma parameters by comparing with FLYCHK simulations. The estimated plasma temperature and density are Tc = 180 eV, ne = 7 × 1020 cm−3 and Tc = 190 eV, ne = 4 × 1020 cm−3 for quartz and SiO2 aerogel foam, respectively. To measure the evolution of the plasma moving away from the targets, four identical ion collectors are placed at different angles (22.5, 30, 45, and 67.5°) from target normal. The angular distribution of the thermal ions are scaled as cosnθ with respect to target normal, where n = 3.8 and 4.8 for the foam and quartz, respectively. The experimental plasma volume measured from the ion collectors and shadowgraphy images are verified by a two-dimensional Eulerian radiative–hydrodynamic simulation (POLLUX code).


Solar Physics ◽  
1970 ◽  
Vol 15 (2) ◽  
pp. 372-379 ◽  
Author(s):  
H. R. Rugge ◽  
A. B. C. Walker
Keyword(s):  

1968 ◽  
Vol 35 ◽  
pp. 404-410 ◽  
Author(s):  
Werner M. Neupert

The observations of extreme ultraviolet (EUV) emission lines of Feix through Fe XVI made by OSO-I have been applied to a study of the solar corona above active regions. Ultraviolet and radio emission are determined for several levels of activity classified according to the type of sunspot group associated with the active region. Both radio emission and line radiation from Fe XVI, the highest stage of ionization of Fe observed, are observed to increase rapidly with the onset of activity and are most intense over an E spot group early in the lifetime of the active region. As activity diminishes, radiation from Fe XV and Fe XIV becomes relatively more prominent. Preliminary X-ray data from OSO-III obtained during a flare are introduced. These indicate that radiation from the highest stage of iron thus far observed, Fe XXV, reaches a maximum first in an X-ray burst and that maxima in lower stages of ionization follow, with delays from 2 to 15 min.


1994 ◽  
Vol 144 ◽  
pp. 541-547
Author(s):  
J. Sýkora ◽  
J. Rybák ◽  
P. Ambrož

AbstractHigh resolution images, obtained during July 11, 1991 total solar eclipse, allowed us to estimate the degree of solar corona polarization in the light of FeXIV 530.3 nm emission line and in the white light, as well. Very preliminary analysis reveals remarkable differences in the degree of polarization for both sets of data, particularly as for level of polarization and its distribution around the Sun’s limb.


1994 ◽  
Vol 144 ◽  
pp. 1-9
Author(s):  
A. H. Gabriel

The development of the physics of the solar atmosphere during the last 50 years has been greatly influenced by the increasing capability of observations made from space. Access to images and spectra of the hotter plasma in the UV, XUV and X-ray regions provided a major advance over the few coronal forbidden lines seen in the visible and enabled the cooler chromospheric and photospheric plasma to be seen in its proper perspective, as part of a total system. In this way space observations have stimulated new and important advances, not only in space but also in ground-based observations and theoretical modelling, so that today we find a well-balanced harmony between the three techniques.


1988 ◽  
Vol 102 ◽  
pp. 47-50
Author(s):  
K. Masai ◽  
S. Hayakawa ◽  
F. Nagase

AbstractEmission mechanisms of the iron Kα-lines in X-ray binaries are discussed in relation with the characteristic temperature Txof continuum radiation thereof. The 6.7 keV line is ascribed to radiative recombination followed by cascades in a corona of ∼ 100 eV formed above the accretion disk. This mechanism is attained for Tx≲ 10 keV as observed for low mass X-ray binaries. The 6.4 keV line observed for binary X-ray pulsars with Tx> 10 keV is likely due to fluorescence outside the He II ionization front.


1988 ◽  
Vol 49 (C1) ◽  
pp. C1-115-C1-118 ◽  
Author(s):  
M. E. BRUNER ◽  
B. M. HAISCH ◽  
W. A. BROWN ◽  
L. W. ACTON ◽  
J. H. UNDERWOOD
Keyword(s):  

Universe ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 219
Author(s):  
Elena Fedorova ◽  
B.I. Hnatyk ◽  
V.I. Zhdanov ◽  
A. Del Popolo

3C111 is BLRG with signatures of both FSRQ and Sy1 in X-ray spectrum. The significant X-ray observational dataset was collected for it by INTEGRAL, XMM-Newton, SWIFT, Suzaku and others. The overall X-ray spectrum of 3C 111 shows signs of a peculiarity with the large value of the high-energy cut-off typical rather for RQ AGN, probably due to the jet contamination. Separating the jet counterpart in the X-ray spectrum of 3C 111 from the primary nuclear counterpart can answer the question is this nucleus truly peculiar or this is a fake “peculiarity” due to a significant jet contribution. In view of this question, our aim is to estimate separately the accretion disk/corona and non-thermal jet emission in the 3C 111 X-ray spectra within different observational periods. To separate the disk/corona and jet contributions in total continuum, we use the idea that radio and X-ray spectra of jet emission can be described by a simple power-law model with the same photon index. This additional information allows us to derive rather accurate values of these contributions. In order to test these results, we also consider relations between the nuclear continuum and the line emission.


Sign in / Sign up

Export Citation Format

Share Document