scholarly journals Observational result on X-rays

1965 ◽  
Vol 23 ◽  
pp. 241-244
Author(s):  
Philip C. Fisher ◽  
Dwight B. Clark ◽  
Arthur J. Meyerott ◽  
Kermit L. Smith

Final results are presented for a March 20, 1963 search for night sky sources of soft X-rays. Although one sky region was found to be associated with an X-ray flux 2,5 to 3 standard deviations above background, the probability of observing one random fluctuation of this importance in the data for the night sky is estimated to be as high as 20%. The region is located at α= 23 h 40 m, δ = + 78°. Apparently negative results from a search of the data for variations of X-ray background with galactic latitude are presented and discussed.

1970 ◽  
Vol 37 ◽  
pp. 406-407
Author(s):  
M. J. Rees

Below 1 keV, analyses of X-ray background data are complicated by galactic absorption effects, which cause the received intensity to vary with galactic latitude. Bowyer et al. (1968) observed that the diffuse background did not fall off as rapidly as was expected towards the galactic plane. One plausible interpretation of their data would be to suppose that a significant flux of soft X-rays emanates from the disc itself. I wish to discuss what could be inferred about the latter component from improved observations of its latitude-dependence, and by indirect methods.


1984 ◽  
Vol 81 ◽  
pp. 215-218 ◽  
Author(s):  
David N. Burrows

The intensity of the X-ray background between 0.5 and 1.0 keV has surprisingly little dependence on galactic latitude. Possible mechanisms for the production of these X-rays include extragalactic emission and emission from dM stars, both of which should be strongly dependent on galactic latitude, and diffuse emission from hot gas (T ≃ 3 x 106 K) surrounding the Sun. These mechanisms can be distinguished by the presence or absence of absorption by gas within a few hundred parsecs of the Sun. We use X-ray data from the HEA0-1 LED detectors and HI data from the recent Crawford Hill 21 cm survey to place limits on the 0.6 keV intensity originating within 300 pc of the Sun in the general direction of (l,b) = (150°, -30°).


1986 ◽  
Vol 119 ◽  
pp. 247-252
Author(s):  
Scott F. Anderson ◽  
Bruce Margon

We describe a program aimed at characterizing the X-ray emission of high redshift QSOs. We have obtained slitless spectra of 50 high galactic latitude fields previously imaged at very high levels of sensitivity by the Einstein Observatory, generally for original goals unrelated to QSOs. Our survey, covering ∼ 17 deg2 of sky to limiting magnitude Bcont ∼ 21, has yielded ∼ 400 previously uncatalogued QSO candidates, each with sensitive new X-ray information available. About 100 of these objects, constituting a “high confidence” set of QSOs, chiefly in the redshift range 1.7 < z < 3 and thus complementary to previous samples with X-ray data, are used to derive the X-ray properties of high redshift QSOs. Even at these most sensitive available X-ray flux levels, only about 25% of the objects are positively detected in X-rays; thus extensive attention has been given to proper treatment of the upper-limit information. We find a mean optical-to-X-ray slope parameter for the sample of . Our results are combined with those of previous surveys to estimate the fraction of the diffuse X-ray background radiation due to QSOs. QSOs are capable of supplying the majority of the radiation, but the chief contribution comes from an annulus of intermediate redshift, moderate luminosity objects.


2021 ◽  
Vol 20 (2) ◽  
pp. 216-216
Author(s):  
L. Podlyashuk

The question of the bactericidal activity of x-rays, despite a number of experimental works in this area, has not yet been clarified: while the first authors working in this direction came to negative results, some of the later found that the well-known bactericidal act.


1989 ◽  
Vol 120 ◽  
pp. 536-536
Author(s):  
S.L. Snowden

The 1/4 keV diffuse X-ray background (SXRB) is discussed in relation to the local interstellar medium (LISM). The most likely source for these soft X-rays is thermal emission from a hot diffuse plasma. The existence of a non-zero flux from all directions and the short ISM mean free path of these X-rays (1020HI cm-2), coupled with ISM pressure constraints, imply that the plasma has a local component and that it must, at least locally (nearest hundred parsecs), have a large filling factor. Our understanding of the geometry and physical parameters of the LISM is therefore directly tied to our understanding of the SXRB.


1994 ◽  
Vol 159 ◽  
pp. 63-72 ◽  
Author(s):  
E. Churazov ◽  
M. Gilfanov ◽  
A. Finoguenov ◽  
R. Sunyaev ◽  
M. Chernyakova ◽  
...  

Brief review of AGNs observations in the X-ray / soft gamma-ray bands with the orbital observatory GRANAT is presented.For three well known bright objects (3C273, NGC4151 and Cen A) broad band (3 keV–few hundreds keV) spectra have been obtained. Imaging capabilities allowed accurate (several arcminutes) identification of these objects with sources of hard X-rays.The spectrum of NGC4151 above ≈ 50 keV was found to be much steeper than that in most of the previous observations, while in standard X-ray band the spectrum agrees with observed previously. The comparison of the observed spectra with that of the X-Ray Background (XRB) indicates that sources similar to NGC4151 could reproduce the shape of XRB spectrum in 3–60 keV band.Cen A was observed in the very low state during most of observations in 1990–1993, except for two observations in 1991. The variability of the hard X-ray flux has been detected on the time scales of several days.


1970 ◽  
Vol 37 ◽  
pp. 392-401
Author(s):  
Joseph Silk

The diffuse X-ray background between 1 keV and 1 MeV is interpreted as non-thermal bremsstrahlung in the intergalactic medium. The observed break in the X-ray spectrum at ∼40 keV yields the heat input to the intergalactic medium, the break being produced by ionization losses of sub-cosmic rays. Proton bremsstrahlung is found not to yield as satisfactory an agreement with observations as electron bremsstrahlung: excessive heating tends to occur. Two alternative models of cosmic ray injection are discussed, one involving continuous injection by evolving sources out to a redshift of about 3, and the other model involving injection by a burst of cosmic rays at a redshift of order 10. The energy density of intergalactic electrons required to produce the observed X-rays is ∼ 10−4 eV/cm3. Assuming a high density (∼ 10−5 cm−3) intergalactic medium, the energy requirement for cosmic ray injection by normal galaxies is ∼ 1058–59ergs/galaxy in sub-cosmic rays. The temperature evolution of the intergalactic medium is discussed, and we find that a similar energy input is also required to explain the observed high degree of ionization (if 3C9 is at a cosmological distance).


1989 ◽  
Vol 134 ◽  
pp. 161-166
Author(s):  
Claude R. Canizares ◽  
Julia L. White

We present mean spectral parameters for various ensembles of quasars observed with the Einstein Observatory Imaging Proportional Counter (IPC). Our sample contains 71 optically or radio selected quasars with 0.1 < z < 3.5, Galactic NH < 1021 cm−2, total counts of 30 −500, and IPC gain < 19. Quasars are grouped into ensembles according to radio properties (Flat Radio Spectrum [FRS], Steep Radio Spectrum [SRS] or Radio Quiet [RQ]), and either redshift or X-ray luminosity, lx. We find a clear correlation between radio properties and α. FRS quasars have α∼0.4, SRS quasars have α∼0.7 and RQ quasars have α ∼1–1.4. There is no evidence for a dependence of α on z nor, for the FRS and SRS ensembles, on lx over nearly three decades. FRS quasars with 2.0 < z < 3.5 have just as flat mean spectra as those with low z, implying that a single power law, which is flatter than the canonical one with α ∼ 0.65, continues into the 1–10 keV band (in which the observed softer X-rays were emitted). Unfortunately, the results for high redshift and high lx RQ quasars are ambiguous because of systematic uncertainties in the ensemble means. Thus we cannot test the two-component spectral hypothesis of Wilkes and Elvis for these objects. SRS X-ray spectra could be steeper than FRS spectra because of the mixing of two components, although a single intrinsically steeper spectrum is easier to reconcile with the absence of z dependence. The uncertainty in a for RQ quasars with high z leaves open the important question of their contribution to the cosmic X-ray background.


1973 ◽  
Vol 55 ◽  
pp. 171-183 ◽  
Author(s):  
Edwin M. Kellogg

Data from the UHURU satellite have provided a list of more than forty high latitude sources (|b| > 20°). X-rays have been detected from among the nearest normal galaxies, giant radio galaxies, Seyferts, QSOs and clusters of galaxies. The cluster sources appear to be extended by several hundred kiloparsecs as well as being very luminous. These cluster sources have systematic differences in their X-ray spectra from individual galaxies.About twenty sources are not reliably identified so far. A few of these are located near undistinguished 3C or MSH radio sources. The rest are either located near distant clusters or undistinguished bright galaxies, or are too far south, so that we have not sufficient optical data to allow a thorough search for possible association with clusters or unusual individual galaxies.The luminosity function for weak, high latitude X-ray sources is determined, and the contribution of sources just below the UHURU threshold of detectability to observed fluctuations in the diffuse X-ray background is evaluated. The total contribution of all observed types of extragalactic sources to the X-ray background is estimated.


Sign in / Sign up

Export Citation Format

Share Document