scholarly journals Star Formation in Cooling Flows

1987 ◽  
Vol 127 ◽  
pp. 167-177
Author(s):  
R. W. O'Connell

Star formation, probably with an abnormal initial mass function, represents the most plausible sink for the large amounts of material being accreted by cD galaxies from cooling flows. There are three prominent cases (NGC 1275, PKS 0745-191, and Abell 1795) where cooling flows have apparently induced unusual stellar populations. Recent studies show that about 50% of other accreting cD's have significant ultraviolet excesses. It therefore appears that detectable accretion populations are frequently associated with cooling flows. The questions of the form of the IMF, the fraction of the flow forming stars, and the lifetime of the flow remain open.

2004 ◽  
Vol 215 ◽  
pp. 83-84
Author(s):  
J. Zorec ◽  
R. Levenhagen ◽  
J. Chauville ◽  
Y. Frémat ◽  
D. Ballereau ◽  
...  

Allowing for systematic differences in the counting of Be Stars due to their overluminosity, changes produced by their fast rotation on spectral types and time spent in the main sequence, a difference between the IMF (Be) and IMF(B) appears, which indicates that the appearance of the Be phenomenon may relay on differences in the initial star formation conditions.


1986 ◽  
Vol 7 ◽  
pp. 489-499
Author(s):  
Hans Zinnecker

AbstractThis review discusses both the earlier and the most recent work on the IMF in young star clusters. It is argued that the study of the stellar content of young star clusters offers the best chance of developing a theory of star formation and of the IMF.


2021 ◽  
Vol 502 (4) ◽  
pp. 5417-5437
Author(s):  
Matthew C Smith

ABSTRACT Galaxy formation simulations frequently use initial mass function (IMF) averaged feedback prescriptions, where star particles are assumed to represent single stellar populations that fully sample the IMF. This approximation breaks down at high mass resolution, where stochastic variations in stellar populations become important. We discuss various schemes to populate star particles with stellar masses explicitly sampled from the IMF. We use Monte Carlo numerical experiments to examine the ability of the schemes to reproduce an input IMF in an unbiased manner while conserving mass. We present our preferred scheme which can easily be added to pre-existing star formation prescriptions. We then carry out a series of high-resolution isolated simulations of dwarf galaxies with supernovae (SNe), photoionization, and photoelectric heating to compare the differences between using IMF averaged feedback and explicitly sampling the IMF. We find that if SNe are the only form of feedback, triggering individual SNe from IMF averaged rates gives identical results to IMF sampling. However, we find that photoionization is more effective at regulating star formation when IMF averaged rates are used, creating more, smaller H ii regions than the rare, bright sources produced by IMF sampling. We note that the increased efficiency of the IMF averaged feedback versus IMF sampling is not necessarily a general trend and may be reversed depending on feedback channel, resolution and other details. However, IMF sampling is always the more physically motivated approach. We conservatively suggest that it should be used for star particles less massive than $\sim 500\, \mathrm{M_\odot }$.


2009 ◽  
Vol 5 (S262) ◽  
pp. 368-369
Author(s):  
M. B. N. Kouwenhoven ◽  
S. P. Goodwin

AbstractObtaining accurate measurements of the initial mass function (IMF) is often considered to be the key to understanding star formation, and a universal IMF is often assumed to imply a universal star formation process. Here, we illustrate that different modes of star formation can result in the same IMF, and that, in order to truly understand star formation, a deeper understanding of the primordial binary population is necessary. Detailed knowledge on the binary fraction, mass ratio distribution, and other binary parameters, as a function of mass, is a requirement for recovering the star formation process from stellar population measurements.


1989 ◽  
Vol 120 ◽  
pp. 44-55
Author(s):  
Richard B. Larson

A central problem in the theory of star formation is to understand the spectrum of masses, or Initial Mass Function, with which stars are formed. The fundamental role of the IMF in galactic evolution has been described by Tinsley (1980), and an extensive review of evidence concerning the IMF and its possible variability has been presented by Scalo (1986). Although the IMF derived from the observations is subject to many uncertainties, two basic features seem reasonably well established. One is that the typical stellar mass, defined such that equal amounts of matter condense into stars above and below this mass, is within a factor of 3 of one solar mass. A theory of star formation should therefore be able to explain why most stars are formed with masses of order one solar mass. The second apparently universal feature is that the IMF for relatively massive stars can be approximated by a power law with a slope not greatly different from that originally proposed by Salpeter (1955). Thus we also need to understand why the IMF always has a similar power-law tail toward higher masses.


1987 ◽  
Vol 7 (2) ◽  
pp. 132-135 ◽  
Author(s):  
P. E. J. Nulsen ◽  
R. M. Johnstone ◽  
A. C. Fabian

AbstractX-ray data show that substantial quantities of hot gas are cooling near the centres of many clusters and groups of galaxies. The existence of such cooling flows has been challenged because of the lack of evidence for star formation from the cooled gas. Spectra of cooling flow galaxies show filling in of the continuum shortward of the break at 4000 Å relative to normal elliptical galaxies. This is consistent with some continuing star formation. Extended regions of line emission are commonly associated with cooling flows. If the initial-mass-function of the newly formed stars which affect the 4000 Å break is like that which applies in the solar neighbourhood, then these stars can also power the line emission. The strength of the 4000 Å break is shown to correlate with the Hβ flux in the manner expected when this is the case. This allows us to esimate the star formation rate from the line luminosity.The rate of star formation required to account for the line emission still falls well short of the rate at which gas is inferred to be cooling. It is argued that, nevertheless, the cooling gas is probably forming into stars. The overall initial-mass-function must be different from that which applies in the solar neighbourhood, but this should not be surprising given the different ambient conditions in a cooling flow.


1998 ◽  
Vol 508 (1) ◽  
pp. 347-369 ◽  
Author(s):  
K. L. Luhman ◽  
G. H. Rieke ◽  
C. J. Lada ◽  
E. A. Lada

Author(s):  
I. Ferreras ◽  
C. Weidner ◽  
A. Vazdekis ◽  
F. La Barbera

The stellar initial mass function (IMF) is one of the fundamental pillars in studies of stellar populations. It is the mass distribution of stars at birth, and it is traditionally assumed to be universal, adopting generic functions constrained by resolved (i.e. nearby) stellar populations (e.g., Salpeter 1955; Kroupa 2001; Chabrier 2003). However, for the vast majority of cases, stars are not resolved in galaxies. Therefore, the interpretation of the photo-spectroscopic observables is complicated by the many degeneracies present between the properties of the unresolved stellar populations, including IMF, age distribution, and chemical composition. The overall good match of the photometric and spectroscopic observations of galaxies with population synthesis models, adopting standard IMF choices, made this issue a relatively unimportant one for a number of years. However, improved models and observations have opened the door to constraints on the IMF in unresolved stellar populations via gravity-sensitive spectral features. At present, there is significant evidence of a non-universal IMF in early-type galaxies (ETGs), with a trend towards a dwarf-enriched distribution in the most massive systems (see, e.g., van Dokkum & Conroy 2010; Ferreras et al. 2013; La Barbera et al. 2013). Dynamical and strong-lensing constraints of the stellar M/L in similar systems give similar results, with heavier M/L in the most massive ETGs (see, e.g., Cappellari et al. 2012; Posacki et al. 2015). Although the interpretation of the results is still open to discussion (e.g., Smith 2014; La Barbera 2015), one should consider the consequences of such a bottom-heavy IMF in massive galaxies.


Sign in / Sign up

Export Citation Format

Share Document