scholarly journals HII regions and star formation in the Magellanic Clouds

1991 ◽  
Vol 148 ◽  
pp. 139-144 ◽  
Author(s):  
Robert C. Kennicutt

The H II regions in the Magellanic Clouds provide an opportunity to characterize the global star formation properties of a galaxy at close range. They also provide a unique laboratory for testing empirical tracers of the massive star formation rates and initial mass functions in more distant galaxies, and for studying the dynamical interactions between massive stars and the interstellar medium. This paper discusses several current studies in these areas.

1986 ◽  
Vol 116 ◽  
pp. 523-528
Author(s):  
J. A. Graham ◽  
Taft E. Armandroff

Highlights of the IAU Symposium 116 are reviewed. Some of the general themes running through the meeting are identified. These include:i) the fruitful interaction between observation, laboratory work and theory. ii) the need for understanding and, if possible, correcting for the effects of incompleteness and bias in observing lists. iii) the importance of the Magellanic Clouds, as the nearest independently evolving stellar systems, in the study of massive star formation and evolution in galaxies.


1986 ◽  
Vol 116 ◽  
pp. 503-504 ◽  
Author(s):  
Michele Kaufman ◽  
R. C. Kennicutt ◽  
F. N. Bash

Giant HII regions are important tracers of recent star formation in distant galaxies. For a selection of HII regions in our galaxy where the exciting stars can be identified, Rumstay (1985) finds that the measured Hα and radio continuum luminosities of an HII region correlate with the stellar ionizing flux derived from model atmospheres and the known exciting stars. Therefore, we use flux measurements of giant HII regions as an index of the distribution of O stars in M81.


1998 ◽  
Vol 15 (1) ◽  
pp. 118-122 ◽  
Author(s):  
Rosemary F. G. Wyse ◽  
Annette M. N. Ferguson ◽  
Jay S. Gallagher ◽  
Deidre A. Hunter

AbstractWe present results, some preliminary, from a major new study of the star formation properties of a sample of nearby disk galaxies (Ferguson 1997). Our emphasis is on the faint outer regions of disks. Hα images, combined with broad-band images and spectroscopy of HII regions, constrain the present and past star formation rates and chemical enrichment. These data also allow study of faint diffuse ionised gas, which traces the influence of massive stars on their environment, and the structure of the interstellar medium.


2018 ◽  
Vol 619 ◽  
pp. A120 ◽  
Author(s):  
Martin G. H. Krause ◽  
Andreas Burkert ◽  
Roland Diehl ◽  
Katharina Fierlinger ◽  
Benjamin Gaczkowski ◽  
...  

Context. Feedback by massive stars shapes the interstellar medium and is thought to influence subsequent star formation. The details of this process are under debate. Aims. We exploited observational constraints on stars, gas, and nucleosynthesis ashes for the closest region with recent massive-star formation, Scorpius–Centaurus OB2, and combined them with three-dimensional (3D) hydrodynamical simulations in order to address the physics and history of the Scorpius–Centaurus superbubble. Methods. We used published cold gas observations of continuum and molecular lines from Planck, Herschel, and APEX. We analysed the Galactic All Sky Survey (GASS) to investigate shell structures in atomic hydrogen, and used Hipparcos and Gaia data in combination with interstellar absorption against stars to obtain new constraints for the distance to the Hi features. Hot gas is traced in soft X-rays via the ROSAT all sky survey. Nucleosynthesis ejecta from massive stars were traced with new INTEGRAL spectrometer observations via 26Al radioactivity. We also performed 3D hydrodynamical simulations for the Sco–Cen superbubble. Results. Soft X-rays and a now more significant detection of 26Al confirm recent (≈1 Myr ago) input of mass, energy, and nucleosynthesis ejecta, likely from a supernova in the Upper Scorpius (USco) subgroup. We confirm a large supershell around the entire OB association and perform a 3D hydrodynamics simulation with a conservative massive star population that reproduces the morphology of the superbubble. High-resolution GASS observations reveal a nested, filamentary supershell. The filaments are possibly related to the Vishniac clumping instability, but molecular gas (Lupus I) is only present where the shell coincides with the connecting line between the subgroups of the OB association, suggesting a connection to the cloud, probably an elongated sheet, out of which the OB association formed. Stars have formed sequentially in the subgroups of the OB association and currently form in Lupus I. To investigate the impact of massive star feedback on extended clouds, we simulate the interaction of a turbulent cloud with the hot, pressurised gas in a superbubble. The hot gas fills the tenuous regions of the cloud and compresses the denser parts. Stars formed in these dense clumps would have distinct spatial and kinematic distributions. Conclusions. The combined results from observations and simulations are consistent with a scenario where dense gas was initially distributed in a band elongated in the direction now occupied by the OB association. Superbubbles powered by massive stars would then repeatedly break out of the elongated parent cloud, and surround and squash the denser parts of the gas sheet and thus induce more star formation. The expected spatial and kinematic distribution of stars is consistent with observations of Sco–Cen. The scenario might apply to many similar regions in the Galaxy and also to active galactic nucleus (AGN)-related superbubbles.


Author(s):  
Sally Oey ◽  
Joel B. Lamb

AbstractThere is growing evidence that massive stars sometimes form in extremely sparse environments. The RIOTS4 survey presents a variety of evidence supporting this scenario, including a sample of 14 OB stars in the Small Magellanic Cloud (SMC) that appear to have formed in situ as field stars. This is based on the presence of dense, symmetric HII regions hosting apparent non-runaway stars. We also present a spatially complete IMF of SMC field OB stars for masses > 7 M⊙, showing that the slope is much steeper than the Salpeter value. The binary fraction among field OB stars is also the same as in clusters, based on a RIOTS4 subsample. These results suggest a relative, but incomplete, suppression of massive star formation in the sparsest regimes.


2008 ◽  
Vol 4 (S256) ◽  
pp. 343-348
Author(s):  
Alceste Z. Bonanos

AbstractDespite the large impact very massive stars (>30 M⊙) have in astrophysics, their fundamental parameters remain uncertain. I present results of a survey aiming to characterize the most massive stars in the Magellanic Clouds. The survey targets the brightest, blue, eclipsing binaries discovered by the OGLE microlensing survey, for which masses and radii are measured to 5%. Such precise data are rare and provide constraints for theories of massive star formation and evolution at low metallicities.


2002 ◽  
Vol 207 ◽  
pp. 157-159
Author(s):  
Myung Gyoon Lee ◽  
Hong Soo Park ◽  
Sang Chul Kim ◽  
William H. Waller ◽  
Joel Wm. Parker ◽  
...  

We present a photometric study of the stars in ionizing star clusters embedded in several giant H II regions of M33 (CC93, IC 142, NGC 595, MA2, NGC 604 and NGC 588). Our photometry is based on the HST-WFPC2 images of these clusters. Color-magnitude diagrams and color-color diagrams of these clusters are obtained and are used for estimating the reddenings and ages of the clusters. The luminosity functions (LFs) and initial mass functions (IMFs) of the massive stars in these clusters are also derived. The slopes of the IMFs range from Γ = −0.5 to −2.1. Interestingly, it is found that the IMFs get steeper with increasing galactocentric distance and with decreasing [O/H] abundance.


1986 ◽  
Vol 116 ◽  
pp. 523-528
Author(s):  
J. A. Graham ◽  
Taft E. Armandroff

Highlights of the IAU Symposium 116 are reviewed. Some of the general themes running through the meeting are identified. These include:i) the fruitful interaction between observation, laboratory work and theory. ii) the need for understanding and, if possible, correcting for the effects of incompleteness and bias in observing lists. iii) the importance of the Magellanic Clouds, as the nearest independently evolving stellar systems, in the study of massive star formation and evolution in galaxies.


1982 ◽  
Vol 99 ◽  
pp. 545-549 ◽  
Author(s):  
Jorge Melnick

Giant HII regions as sites of massive star formation.Giant HII regions are the brightest extragalactic emission line objects that can be studied in detail. With diameters of several hundreds of parsecs, these nebulae can be easily resolved out to distances of a few Mpc. Typically 100 or more 0 stars are required to account for the observed ionization of the nebular gas and this implies that the cores of giant HII regions contain populous young star clusters. The stars in these clusters have essentially the same age and chemical composition. Thus, giant HII region cores provide excellent sites where theories of the formation and evolution of massive stars and, in particular, of Wolf-Rayet (WR) stars can be tested.


2010 ◽  
Vol 6 (S270) ◽  
pp. 57-64
Author(s):  
Ian A. Bonnell ◽  
Rowan J Smith

AbstractThere has been considerable progress in our understanding of how massive stars form but still much confusion as to why they form. Recent work from several sources has shown that the formation of massive stars through disc accretion, possibly aided by gravitational and Rayleigh-Taylor instabilities is a viable mechanism. Stellar mergers, on the other hand, are unlikely to occur in any but the most massive clusters and hence should not be a primary avenue for massive star formation. In contrast to this success, we are still uncertain as to how the mass that forms a massive star is accumulated. there are two possible mechanisms including the collapse of massive prestellar cores and competitive accretion in clusters. At present, there are theoretical and observational question marks as to the existence of high-mass prestellar cores. theoretically, such objects should fragment before they can attain a relaxed, centrally condensed and high-mass state necessary to form massive stars. Numerical simulations including cluster formation, feedback and magnetic fields have not found such objects but instead point to the continued accretion in a cluster potential as the primary mechanism to form high-mass stars. Feedback and magnetic fields act to slow the star formation process and will reduce the efficiencies from a purely dynamical collapse but otherwise appear to not significantly alter the process.


Sign in / Sign up

Export Citation Format

Share Document