Dynamical Evolution of the Universe in the Quark-Hadron Phase Transition and Nugget Formation

2005 ◽  
Vol 201 ◽  
pp. 461-462
Author(s):  
Ashok. Goyal ◽  
Deepak. Chandra

We study the dynamics of first-order phase transition in the early Universe when it was 10 −50μs old with quarks and gluons condensing into hadrons. We look at the evolution of the Universe in small as well as large super cooling scenario.

Author(s):  
Michael Kachelriess

As the early universe cools down, it may perform transitions to phases with more and more broken symmetries. In a first-order phase transition, fields may be trapped in the false vacuum; the rate of the resulting tunneling process to the true vacuum is derived. Phase transitions can lead also to the formation of topological defects. Their structure and the reason for their stability are discussed.


2018 ◽  
Vol 168 ◽  
pp. 05001 ◽  
Author(s):  
Toshinori Matsui

Among various scenarios of baryon asymmetry of the Universe, electroweak baryogenesis is directly connected with physics of the Higgs sector. We discuss spectra of gravitational waves which are originated by the strongly first order phase transition at the electroweak symmetry breaking, which is required for a successful scenario of electroweak baryogenesis. In the Z3 symmetric singlet scalar model, the significant gravitational waves are caused by the multi-step phase transition. We show that the model can be tested by measuring the characteristic spectra of the gravitational waves at future interferometers such as LISA and DECIGO.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Avik Paul ◽  
Upala Mukhopadhyay ◽  
Debasish Majumdar

Abstract We consider a simple extension of Standard Model by adding two complex singlet scalars with a U(1) symmetry. A discrete $$ {\mathcal{Z}}_2\times {\mathcal{Z}}_2^{\prime } $$ Z 2 × Z 2 ′ symmetry is imposed in the model and the added scalars acquire a non zero vacuum expectation value (VEV) when the imposed symmetry is broken spontaneously. The real (CP even) parts of the complex scalars mix with the SM Higgs and give three physical mass eigenstates. One of these physical mass eigenstates is attributed to the SM like Higgs boson with mass 125.09 GeV. In the present scenario, domain walls are formed in the early Universe due to the breaking of discrete $$ {\mathcal{Z}}_2\times {\mathcal{Z}}_2^{\prime } $$ Z 2 × Z 2 ′ symmetry. In order to ensure the unstability of the domain wall this discrete symmetry is also explicitly broken by adding a bias potential to the Lagrangian. The unstable annihilating domain walls produce a significant amount of gravitational waves (GWs). In addition, we also explore the possibility of the production of GW emission from the strong first-order phase transition. We calculate the intensities and frequencies of each of such gravitational waves originating from two different phenomena of the early Universe namely annihilating domain walls and strong first-order phase transition. Finally, we investigate the observational signatures from these GWs at the future GW detectors such as ALIA, BBO, DECIGO, LISA, TianQin, Taiji, aLIGO, aLIGO+ and pulsar timing arrays such as SKA, IPTA, EPTA, PPTA, NANOGrav11 and NANOGrav12.5.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Daniele Barducci ◽  
Enrico Bertuzzo ◽  
Martín Arteaga Tupia

Abstract We consider a scenario in which the electroweak scale is stabilized via the relaxion mechanism during inflation, focussing on the case in which the back-reaction potential is generated by the confinement of new strongly interacting vector-like fermions. If the reheating temperature is sufficiently high to cause the deconfinement of the new strong interactions, the back-reaction barrier then disappears and the Universe undergoes a second relaxation phase. This phase stops when the temperature drops sufficiently for the back-reaction to form again. We identify the regions of parameter space in which the second relaxation phase does not spoil the successful stabilization of the electroweak scale. In addition, the generation of the back-reaction potential that ends the second relaxation phase can be associated to a strong first order phase transition. We then study when such transition can generate a gravitational wave signal in the range of detectability of future interferometer experiments.


Sign in / Sign up

Export Citation Format

Share Document