scholarly journals A Cylindrical Formulation of Force Free Magnetic Fields

2001 ◽  
Vol 203 ◽  
pp. 270-272
Author(s):  
E. A. Evangelidis ◽  
G. J. J. Botha

A new solution of the force free field equation is presented in cylindrical coordinates.

2015 ◽  
Vol 11 (S320) ◽  
pp. 167-174
Author(s):  
M. S. Wheatland ◽  
S. A. Gilchrist

AbstractWe review nonlinear force-free field (NLFFF) modeling of magnetic fields in active regions. The NLFFF model (in which the electric current density is parallel to the magnetic field) is often adopted to describe the coronal magnetic field, and numerical solutions to the model are constructed based on photospheric vector magnetogram boundary data. Comparative tests of NLFFF codes on sets of boundary data have revealed significant problems, in particular associated with the inconsistency of the model and the data. Nevertheless NLFFF modeling is often applied, in particular to flare-productive active regions. We examine the results, and discuss their reliability.


1985 ◽  
Vol 107 ◽  
pp. 221-224
Author(s):  
J. J. Aly

We show that a sheared 2–D force–free field can evolve in a quasi–static way towards an open configuration, and apply this result to a qualitative theory of two–ribbon solar flares.


2013 ◽  
Vol 8 (S300) ◽  
pp. 479-480
Author(s):  
Jie Zhao ◽  
Hui Li ◽  
Etienne Pariat ◽  
Brigitte Schmieder ◽  
Yang Guo ◽  
...  

AbstractWith the cylindrical equal area (CEA) projection data from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO), we reconstructed the three-dimensional (3D) magnetic fields in the corona, using a non-linear force-free field (NLFFF) extrapolation method every 12 minutes during five days, to calculate the squashing degree factor Q in the volume. The results show that this AR has an hyperbolic flux tube (HFT) configuration, a typical topology of quadrupole, which is stable even during the two large flares (M6.6 and X2.2 class flares).


1998 ◽  
Vol 167 ◽  
pp. 274-277
Author(s):  
A.W. Longbottom

AbstractA fast multigrid method to calculate the linear force-free field for a prescribed photospheric flux distribution is outlined. This is used to examine an idealized model of a filament channel. The magnetic fields, for a number of different field strengths and positions, are calculated and the height up to which field lines connect along the channel is examined. This is shown to strongly depend on the value of the helicity of the system. A possible explanation, in terms of the global helicity of the system, is suggested for the dextral/sinistral hemispheric pattern observed in filament channels.


2020 ◽  
Author(s):  
Haimin Wang

<p>We study the Solar Active Region (AR) 12673 in September 2017, which is the most flare productive AR in the solar cycle 24.  Observations from Goode Solar Telescope (GST) show the strong photospheric magnetic fields (nearly 6000 G) in polarity  inversion line (PIL) and apparent photospheric twist on September 6,  the day of X9.3 flare. Corresponding to the strong twist,   upflows are observed to last one day  at the center part of that section of PIL;  down flows are observed in two ends.  Transverse velocity fields are derived from flow tracking.   Both Non-Linear Force-Free Field (NLFFF) and Non-Force-Free Field (NFFF) extrapolations are carried out and compared to trace 3-D magnetic fields in corona. Combining with EOVSA, coronal magnetic fields between 1000 and 2000 gauss are found above the flaring PIL at the height range between 8 and 4Mm, outlining the structure of a fluxrope with sheared arcade.  The above magnetic and velocity fields, as well as thermal structure of corona, provide initial condition for further data-driven MHD simulation.</p>


2000 ◽  
Vol 195 ◽  
pp. 255-264 ◽  
Author(s):  
S. A. Colgate ◽  
H. Li

Recent rotation-measure observations of a dozen or so galaxyclusters have revealed a surprisingly large number of magnetic fields whose estimated energy and flux are, on average, ~ 1058 ergs and ~ 1041 G cm2, respectively. These quantities are so much larger than any coherent sums of individual galaxies within the cluster that an efficient galactic dynamo is required. We associate these fields with single AGNs within the cluster and, therefore, with all galaxies during their AGN phase. Only the central, massive black hole (BH) has the necessary binding energy, ~ 1061 ergs. Only the accretion disk during the BH formation has the winding number, ~ 1011 turns, necessary to make the gain and magnetic flux. We present a model of a BH accretion-disk dynamo that might create these magnetic fields, where the helicity of the α-Ω dynamo is driven by star-disk collisions. The back reaction of the saturated dynamo forms a force-free field helix that carries the energy and flux of the dynamo and redistributes them within the clusters.


2002 ◽  
Vol 67 (2-3) ◽  
pp. 139-147
Author(s):  
Y. Q. HU ◽  
L. LI

Starting from the one-dimensional energy integral and related stability theorems given by Newcomb [Ann. Phys (NY)10, 232 (1960)] for a linear pinch system, this paper analyses the stability of one-dimensional force-free magnetic fields in cylindrical coordinates (r, θ, z). It is found that the stability of the force-free field is closely related to the radial distribution of the pitch of the field lines: h(r) = 2πrBz/Bθ. The following three types of force-free fields are proved to be unstable: (i) force-free fields with a uniform pitch; (ii) force-free fields with a pitch that increases in magnitude with r in the neighbourhood of r = 0(d[mid ]h[mid ]/dr > 0); and (iii) force-free fields for which (dh/dr)r=0 = 0, Bθ α rm in the neighbourhood of r = 0, and (h d2h/dr2)r=0 > −128π2/(2m+4)2. On the other hand, the stability does not have a definite relation to the maximum of the force-free factor α defined by [dtri ]×B = αB. Examples will be given to illustrate that force-free fields with an infinite force-free factor at the boundary are stable, whereas those with a force-free factor that is finite and smaller than the lowest eigenvalue of linear force-free field solutions in the domain of interest are unstable. The latter disproves the sufficient criterion for stability of nonlinear force-free magnetic fields given by Krüger [J. Plasma Phys.15, 15 (1976)] that a nonlinear force-free field is stable if the maximum absolute value of the force-free factor is smaller than the lowest eigenvalue of linear force-free field solutions in the domain of interest.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Thomas Wiegelmann ◽  
Takashi Sakurai

AbstractThe structure and dynamics of the solar corona is dominated by the magnetic field. In most areas in the corona magnetic forces are so dominant that all non-magnetic forces such as plasma pressure gradients and gravity can be neglected in the lowest order. This model assumption is called the force-free field assumption, as the Lorentz force vanishes. This can be obtained by either vanishing electric currents (leading to potential fields) or the currents are co-aligned with the magnetic field lines. First we discuss a mathematically simpler approach that the magnetic field and currents are proportional with one global constant, the so-called linear force-free field approximation. In the generic case, however, the relationship between magnetic fields and electric currents is nonlinear and analytic solutions have been only found for special cases, like 1D or 2D configurations. For constructing realistic nonlinear force-free coronal magnetic field models in 3D, sophisticated numerical computations are required and boundary conditions must be obtained from measurements of the magnetic field vector in the solar photosphere. This approach is currently a large area of research, as accurate measurements of the photospheric field are available from ground-based observatories such as the Synoptic Optical Long-term Investigations of the Sun and the Daniel K. Inouye Solar Telescope (DKIST) and space-born, e.g., from Hinode and the Solar Dynamics Observatory. If we can obtain accurate force-free coronal magnetic field models we can calculate the free magnetic energy in the corona, a quantity which is important for the prediction of flares and coronal mass ejections. Knowledge of the 3D structure of magnetic field lines also help us to interpret other coronal observations, e.g., EUV images of the radiating coronal plasma.


Sign in / Sign up

Export Citation Format

Share Document