scholarly journals Reconstruction Of Cluster Mass Distributions: Application And Results For CL0939+4713

1996 ◽  
Vol 173 ◽  
pp. 129-130
Author(s):  
Carolin Seitz

We show the reconstructed mass distribution of the cluster CL0939+4713 (zd = 0.4) using data obtained with the WFPC2 instrument on HST. We find a remarkable correlation with the light distribution of the bright galaxies, which are probably cluster member galaxies. A bootstrapping analysis confirms this correlation, whereas an anti-correlation between the mass distribution and the faint galaxies - used for the mass reconstruction - is found. We give lower bounds on the mass inside the data field, and confirm that this cluster is indeed quite massive.

1989 ◽  
Vol 54 (7) ◽  
pp. 1821-1829
Author(s):  
Bedřich Porsch ◽  
Simon King ◽  
Lars-Olof Sundelöf

The differences between the QELSS and classical diffusion coefficient of a polydisperse polymer resulting from distinct definitions of experimentally accessible average values are calculated for two assumed specific forms of molar mass distributions. Predicted deviations are compared with the experiment using NBS 706 standard polystyrene. QELSS Dz of this sample relates within 2-4% to the classical diffusion coefficient, if the Schulz-Zimm molar mass distribution is assumed to be valid. In general, differences between the height-area and QELSS diffusion coefficient of about 20% may be found for Mw/Mn ~ 2, and this value may increase above 35%, if strongly tailing molar mass distribution pertains to the sample.


2018 ◽  
Vol 614 ◽  
pp. A8 ◽  
Author(s):  
G. Chirivì ◽  
S. H. Suyu ◽  
C. Grillo ◽  
A. Halkola ◽  
I. Balestra ◽  
...  

Exploiting the powerful tool of strong gravitational lensing by galaxy clusters to study the highest-redshift Universe and cluster mass distributions relies on precise lens mass modelling. In this work, we aim to present the first attempt at modelling line-of-sight (LOS) mass distribution in addition to that of the cluster, extending previous modelling techniques that assume mass distributions to be on a single lens plane. We have focussed on the Hubble Frontier Field cluster MACS J0416.1–2403, and our multi-plane model reproduces the observed image positions with a rms offset of ~0.′′53. Starting from this best-fitting model, we simulated a mock cluster that resembles MACS J0416.1–2403 in order to explore the effects of LOS structures on cluster mass modelling. By systematically analysing the mock cluster under different model assumptions, we find that neglecting the lensing environment has a significant impact on the reconstruction of image positions (rms ~0.′′3); accounting for LOS galaxies as if they were at the cluster redshift can partially reduce this offset. Moreover, foreground galaxies are more important to include into the model than the background ones. While the magnification factor of the lensed multiple images are recovered within ~10% for ~95% of them, those ~5% that lie near critical curves can be significantly affected by the exclusion of the lensing environment in the models. In addition, LOS galaxies cannot explain the apparent discrepancy in the properties of massive sub-halos between MACS J0416.1–2403 and N-body simulated clusters. Since our model of MACS J0416.1–2403 with LOS galaxies only reduced modestly the rms offset in the image positions, we conclude that additional complexities would be needed in future models of MACS J0416.1–2403.


2002 ◽  
Vol 207 ◽  
pp. 545-554
Author(s):  
William E. Harris

Globular clusters in most large galaxies are a mixture of metal-poor and metal-rich (bimodal), but the halo stars are almost entirely metal-rich. This and other lines of evidence argue that the metal-poor globular clusters formed within widely distributed 108 − 109M⊙ gas clouds (supergiant GMCs) during an early burst in which most of the gas was ejected or unused till later rounds of star formation.New simulations of the growth of pre-galactic potential wells in the early universe now indicate that the initial power-law form of the globular cluster mass distribution (dN/dM ∼ M-1.8) is a miniature replica of the mass distribution of the SGMCs themselves, which grow hierarchically in the CDM potential wells of large protogalaxies.


1987 ◽  
Vol 117 ◽  
pp. 263-278
Author(s):  
Simon D. M. White

The structure of the dominant “dark” component of the Universe may evolve primarily under the influence of gravity. A number of models for the evolution of the Universe make specific predictions for the statistical properties of density fluctuations at early times. N-body simulations can follow the nonlinear development of such fluctuations to the present day. A major difficulty arises because we cannot observe the present mass distribution directly. Recent N-body work has concentrated on models dominated by weakly interacting free elementary particles. Neutrino-dominated but otherwise conventional cosmologies pass rapidly from a smooth distribution to one dominated by lumps with masses greater than those of any known object. Cosmologies dominated by “cold dark matter” produce mass distributions which fit the observed galaxy distribution (i) if Ω = 0.1–0.2 and galaxies follow the mass distribution, or (ii) if Ω = 1, HO< 50 km/s/Mpc and galaxies form preferentially in high density regions. In the latter case, clumps form with flat rotation curves with about the amplitude and abundance expected for galaxy halos.


1987 ◽  
Vol 117 ◽  
pp. 66-66 ◽  
Author(s):  
David Burstein ◽  
Vera C. Rubin

Our group has now obtained rotation curves for 80 spiral galaxies, Hubble types Sa through Sd. As described in Rubin et al. (Ap. J. 289, 81; 1985), the forms of these rotation curves are similar for all Hubble types. Given this observational fact, we have chosen to analyze the mass distributions for these galaxies under the assumption that the mass distributions for all spirals can be described by the same three-dimensional form, here taken to be spherical for simplicity. The mass distribution forms for 71 of these galaxies can be placed into a simple classification scheme based on the curvature of mass distribution form in a log(radius) - log (integral mass) diagram. The three most common mass forms among this continuum are termed Types I, II and III, the forms of which are displayed below (see also the discussion by Rubin elsewhere in this Symposium).


2018 ◽  
Vol 619 ◽  
pp. A89 ◽  
Author(s):  
Z. Butcher ◽  
S. Schneider ◽  
W. van Driel ◽  
M. D. Lehnert

We present a new optical luminosity-HI mass bivariate luminosity function (BLF) based on HI line observations from the Nançay Interstellar Baryons Legacy Extragalactic Survey (NIBLES). NIBLES sources lie within the local universe (900 ≤ c z ≤ 12 000 km s−1) and were chosen from SDSS DR5 such that the optical luminosity function was sampled as uniformly as possible. The HI mass function (HIMF) derived from our raw-data BLF, which is based on HI detections only, is consistent with the HIMFs derived from other optically selected surveys in that the low-mass slope is flatter than those derived from blind HI surveys. However, spanning the entire luminosity range of NIBLES, we identify a highly consistent distribution of the HI gas mass to luminosity ratio (gas-to-light ratio) with a predictable progression in the mean MHI/L r ratio as a function of L r. This consistency allows us to construct plausible gas-to-light ratio distributions for very low-luminosity bins which lie outside the NIBLES sample. We also identify a ∼10% decrease in detection fraction for galaxies fainter than log(L r) = 9.25, consistent with the expected decrease due to distance and sensitivity effects. Accounting for these trends, we reconstruct plausible gas-to-light distributions spanning luminosity bins down to log(L r) = 5.25, thus producing a corrected BLF. This corrected BLF is in good qualitative agreement with optical luminosity-HI mass distributions from the ALFALFA survey and is able to accurately reproduce blind survey HIMFs, lending credibility that this two dimensional optical luminosity-HI mass distribution is an accurate representation of the volume density distribution of galaxies in the local universe. We also note that our agreement with HIMFs from other surveys is dependent on accounting for all systematic differences such as selection method, Hubble constant and HI flux scale.


2019 ◽  
Vol 489 (2) ◽  
pp. 2511-2524 ◽  
Author(s):  
T N Varga ◽  
J DeRose ◽  
D Gruen ◽  
T McClintock ◽  
S Seitz ◽  
...  

ABSTRACT Weak lensing source galaxy catalogues used in estimating the masses of galaxy clusters can be heavily contaminated by cluster members, prohibiting accurate mass calibration. In this study, we test the performance of an estimator for the extent of cluster member contamination based on decomposing the photometric redshift P(z) of source galaxies into contaminating and background components. We perform a full scale mock analysis on a simulated sky survey approximately mirroring the observational properties of the Dark Energy Survey Year One observations (DES Y1), and find excellent agreement between the true number profile of contaminating cluster member galaxies in the simulation and the estimated one. We further apply the method to estimate the cluster member contamination for the DES Y1 redMaPPer cluster mass calibration analysis, and compare the results to an alternative approach based on the angular correlation of weak lensing source galaxies. We find indications that the correlation based estimates are biased by the selection of the weak lensing sources in the cluster vicinity, which does not strongly impact the P(z) decomposition method. Collectively, these benchmarks demonstrate the strength of the P(z) decomposition method in alleviating membership contamination and enabling highly accurate cluster weak lensing studies without broad exclusion of source galaxies, thereby improving the total constraining power of cluster mass calibration via weak lensing.


Sign in / Sign up

Export Citation Format

Share Document