scholarly journals The stellar disk component: distribution, motions, age and stellar composition

1985 ◽  
Vol 106 ◽  
pp. 133-142
Author(s):  
Gösta Lyngå

The distribution of the stellar disk component is studied with particular emphasis on the properties of open clusters. A scale height of 80 pc is found for clusters younger than 109 years while the scale height is 200 pc for older clusters. A radial metallicity gradient in the disk is confirmed but there seem to be significant abundance variations apart from this. There are radial gradients in age as well as in linear diameter. Kinematically, there are a number of regions in the Milky Way with systematic radial velocity residuals.

Author(s):  
Tobias Buck ◽  
Aura Obreja ◽  
Andrea V Macciò ◽  
Ivan Minchev ◽  
Aaron A Dutton ◽  
...  

Abstract Simulating thin and extended galactic disks has long been a challenge in computational astrophysics. We introduce the NIHAO-UHD suite of cosmological hydrodynamical simulations of Milky Way mass galaxies and study stellar disk properties such as stellar mass, size and rotation velocity which agree well with observations of the Milky Way and local galaxies. In particular, the simulations reproduce the age-velocity dispersion relation and a multi-component stellar disk as observed for the Milky Way. Half of our galaxies show a double exponential vertical profile, while the others are well described by a single exponential model which we link to the disk merger history. In all cases, mono-age populations follow a single exponential whose scale height varies monotonically with stellar age and radius. The scale length decreases with stellar age while the scale height increases. The general structure of the stellar disks is already set at time of birth as a result of the inside-out and upside-down formation. Subsequent evolution modifies this structure by increasing both the scale length and height of all mono-age populations. Thus, our results put tight constraints on how much dynamical memory stellar disks can retain over cosmological timescales. Our simulations demonstrate that it is possible to form thin galactic disks in cosmological simulations provided there are no significant stellar mergers at low redshifts. Most of the stellar mass is formed in-situ with only a few percent ($\lesssim 5\%$) brought in by merging satellites at early times. Redshift zero snapshots and halo catalogues are publicly available.


2013 ◽  
Vol 9 (S298) ◽  
pp. 304-309
Author(s):  
J.L. Hou ◽  
L. Chen ◽  
J.C. Yu ◽  
J. Sellwood ◽  
C. Pryor

AbstractIn this paper, we present our recent work on the evolution of abundance gradients along the Milky Way disk based on the Geneva Copenhagen Survey (GCS) and Radial Velocity Experiment (RAVE) data. We will also discuss the role of the LAMOST Milky Way disk survey in clarifying the properties of metallicity breaks observed through open clusters and young tracers along the Milky Way disk. It is believed that the Galactic disk forms inside-out, in which the stellar population at increasing radii is younger and more metal poor. This picture is consistent with most Galactic Chemical Evolution (GCE) models which also predict a tight correlation between the metallicity and age of stars at a given radius. However, it is only a result of “steady state" and no dynamical evolution effects were taken into account. We have selected two stellar samples from GCS and RAVE, each sample contains about 10,000 local thin-disk, main-sequence stars. We use the guiding radius which is determined by the conservation of z-direction angular momentum, to eliminate the blurring effects. And also use the effective temperature of the main sequence stars as a proxy of stellar age. It is shown that the metallicity gradient flattens as the age increases. This is not consistent with our previous GCE prediction, but can be explained by radial mixing effects. In order to further demonstrate the abundance breaks observed in the Galactic disk we have proposed, and have been carrying out, an open cluster survey project based on LAMOST. We plan to observe at least 400 open clusters in the northern Galactic sky. From the observations, we will get uniform parameters for those clusters with radial velocity and metallicities. We anticipate that this uniform open cluster sample could clarify the observed abundance break around the Milky Way disk corotation radius and also give a more robust result concerning the evolution of the abundance gradient.


1983 ◽  
Vol 100 ◽  
pp. 133-134
Author(s):  
Frank N. Bash

Bash and Peters (1976) suggested that giant molecular clouds (GMC's) can be viewed as ballistic particles launched from the two-armed spiral-shock (TASS) wave with orbits influenced only by the overall galactic gravitational potential perturbed by the spiral gravitational potential in the arms. For GMC's in the Milky Way, the model predicts that the radial velocity observed from the Sun increases with age (time since launch). We showed that the terminal velocity of CO observed from l ≃ 30° to l ≃ 60° can be understood if all GMC's are born in the spiral pattern given by Yuan (1969) and live 30 × 106 yrs. Older GMC's were predicted to have radial velocities which exceed observed terminal velocities.


1998 ◽  
Vol 184 ◽  
pp. 385-386
Author(s):  
Roelof S. de Jong ◽  
Roger L. Davies ◽  
Robert F. Minchin ◽  
John R. Lucey ◽  
James Steel

Two classes of elliptical galaxies are now recognised (Kormendy & Bender 1996). Luminous ellipticals rotate slowly (Davies et al. 1983and tend to have boxy isophotes. Ellipticals fainter than L∗ exhibit an increasing tendency to be rotationally supported and to possess a stellar disk component. This dichotomy led Bender, Burstein & Faber (1992) to suggest that the physical variable that controls the ultimate nature of a forming galaxy is the degree of gaseous dissipation that occurs in the final merger it experiences. Low luminosity systems experience more dissipative mergers which generate high rotation, disky end products. As bigger galaxies are formed, the mergers become increasingly stellar, producing the classical slow rotating ellipticals. They termed this the gas/stellar continuum. This global dichotomy is also reflected in the bimodality of core morphologies of the heterogeneous sample of local ellipticals observed with HST. The low luminosity disky galaxies have ‘hard’ cores with a steep slope in the luminosity profile at small radii, whereas the luminous galaxies have ‘soft’ cores with flat profiles at small radii (e.g. Faber et al. 1997).


2020 ◽  
Vol 72 (6) ◽  
Author(s):  
Takuya Takarada ◽  
Bun’ei Sato ◽  
Masashi Omiya ◽  
Yasunori Hori ◽  
Michiko S Fujii

Abstract We report on a radial-velocity search for short-period planets in the Pleiades open cluster. We observed 30 Pleiades member stars at the Okayama Astrophysical Observatory with the High Dispersion Echelle Spectrograph. To evaluate and mitigate the effects of stellar activity on radial-velocity (RV) measurements, we computed four activity indicators (full width at half maximum, Vspan, Wspan, and SHα). Among our sample, no short-period planet candidates were detected. Stellar intrinsic RV jitter was estimated to be 52 m s−1, 128 m s−1, and 173 m s−1 for stars with $v$ sin i of 10 km s−1, 15 km s−1, and 20 km s−1, respectively. We determined the planet occurrence rate from our survey and set the upper limit to 11.4% for planets with masses 1–13 MJUP and period 1–10 d. To set a more stringent constraint on the planet occurrence rate, we combined the result of our survey with those of other surveys targeting open clusters with ages in the range 30–300 Myr. As a result, the planet occurrence rate in young open clusters was found to be less than 7.4%, 2.9%, and 1.9% for planets with an orbital period of 3 d and masses of 1–5, 5–13, and 13–80 MJUP, respectively.


2018 ◽  
Vol 617 ◽  
pp. A142 ◽  
Author(s):  
S. Sarkar ◽  
C. J. Jog

We study the vertical stellar distribution of the Milky Way thin disk in detail with particular focus on the outer disk. We treat the galactic disk as a gravitationally coupled, three-component system consisting of stars, atomic hydrogen gas, and molecular hydrogen gas in the gravitational field of the dark matter halo. The self-consistent vertical distribution for stars and gas in such a realistic system is obtained for radii between 4–22 kpc. The inclusion of an additional gravitating component constrains the vertical stellar distribution toward the mid-plane, so that the mid-plane density is higher, the disk thickness is reduced, and the vertical density profile is steeper than in the one-component, isothermal, stars-alone case. We show that the stellar distribution is constrained mainly by the gravitational field of gas and dark matter halo in the inner and the outer Galaxy, respectively. We find that the thickness of the stellar disk (measured as the half-width at half-maximum of the vertical density distribution) increases with radius, flaring steeply beyond R = 17 kpc. The disk thickness is reduced by a factor of 3–4 in the outer Galaxy as a result of the gravitational field of the halo, which may help the disk resist distortion at large radii. The disk would flare even more if the effect of dark matter halo were not taken into account. Thus it is crucially important to include the effect of the dark matter halo when determining the vertical structure and dynamics of a galactic disk in the outer region.


2018 ◽  
Vol 156 (5) ◽  
pp. 244 ◽  
Author(s):  
Martina Baratella ◽  
Giovanni Carraro ◽  
Valentina D’Orazi ◽  
Eugene A. Semenko

2018 ◽  
Vol 615 ◽  
pp. A12 ◽  
Author(s):  
Steffi X. Yen ◽  
Sabine Reffert ◽  
Elena Schilbach ◽  
Siegfried Röser ◽  
Nina V. Kharchenko ◽  
...  

Context. Open clusters have long been used to gain insights into the structure, composition, and evolution of the Galaxy. With the large amount of stellar data available for many clusters in the Gaia era, new techniques must be developed for analyzing open clusters, as visual inspection of cluster color-magnitude diagrams is no longer feasible. An automatic tool will be required to analyze large samples of open clusters. Aims. We seek to develop an automatic isochrone-fitting procedure to consistently determine cluster membership and the fundamental cluster parameters. Methods. Our cluster characterization pipeline first determined cluster membership with precise astrometry, primarily from TGAS and HSOY. With initial cluster members established, isochrones were fitted, using a χ2 minimization, to the cluster photometry in order to determine cluster mean distances, ages, and reddening. Cluster membership was also refined based on the stellar photometry. We used multiband photometry, which includes ASCC-2.5 BV, 2MASS JHKs, and Gaia G band. Results. We present parameter estimates for all 24 clusters closer than 333 pc as determined by the Catalogue of Open Cluster Data and the Milky Way Star Clusters catalog. We find that our parameters are consistent to those in the Milky Way Star Clusters catalog. Conclusions. We demonstrate that it is feasible to develop an automated pipeline that determines cluster parameters and membership reliably. After additional modifications, our pipeline will be able to use Gaia DR2 as input, leading to better cluster memberships and more accurate cluster parameters for a much larger number of clusters.


Sign in / Sign up

Export Citation Format

Share Document