scholarly journals Radial-velocity search and statistical studies for short-period planets in the Pleiades open cluster

2020 ◽  
Vol 72 (6) ◽  
Author(s):  
Takuya Takarada ◽  
Bun’ei Sato ◽  
Masashi Omiya ◽  
Yasunori Hori ◽  
Michiko S Fujii

Abstract We report on a radial-velocity search for short-period planets in the Pleiades open cluster. We observed 30 Pleiades member stars at the Okayama Astrophysical Observatory with the High Dispersion Echelle Spectrograph. To evaluate and mitigate the effects of stellar activity on radial-velocity (RV) measurements, we computed four activity indicators (full width at half maximum, Vspan, Wspan, and SHα). Among our sample, no short-period planet candidates were detected. Stellar intrinsic RV jitter was estimated to be 52 m s−1, 128 m s−1, and 173 m s−1 for stars with $v$ sin i of 10 km s−1, 15 km s−1, and 20 km s−1, respectively. We determined the planet occurrence rate from our survey and set the upper limit to 11.4% for planets with masses 1–13 MJUP and period 1–10 d. To set a more stringent constraint on the planet occurrence rate, we combined the result of our survey with those of other surveys targeting open clusters with ages in the range 30–300 Myr. As a result, the planet occurrence rate in young open clusters was found to be less than 7.4%, 2.9%, and 1.9% for planets with an orbital period of 3 d and masses of 1–5, 5–13, and 13–80 MJUP, respectively.

2009 ◽  
Vol 5 (S266) ◽  
pp. 539-539
Author(s):  
Gladys Solivella ◽  
Edgard Giorg ◽  
Rubén Vázquez ◽  
Giovanni Carraro

AbstractNGC 4852 is a moderately compact cluster centered at α2000 = 13 : 00 : 09; δ = −59 : 36 : 48, located near the center of an Hα superring. This cluster forms part of an extended region including young stellar aggregates inside a circle with a radius of 3 degrees, where many show an abundance of emission line stars. In the field of this cluster, two stars of known type exist: Wray 15–1039 (emission-line object) and CD −58:4845 (emission-line star). We do not yet know whether the Be phase is transient or whether it is just what randomly happens in some hot stars. It appears that Be star may be found even in clusters as old as 70 Myr with a high occurrence rate in clusters of 25–27 Myr old. A recent photometric survey in NGC 4852 down to V = 22 – 23 mag established that NGC 4852 is about 200 – 250 Myr old, located at 1.1 kpc from the Sun and with a mean E(B − V) = 0.45 mag. Since the presence of potential Be-type stars in the cluster area suggests it may be a very young object instead of moderately old, we decided to carry out spectroscopy for 33 selected stars and CCD UBVI photometry for the bright objects in the cluster area. This way, we attempt to clarify their evolutionary state and include them in the framework of emission-line stars and open clusters. From our analysis, we agree with the cluster distance and reddening determined by earlier studies, but we derive that the age of NGC 4852 is younger than 40 Myr.


2020 ◽  
Vol 633 ◽  
pp. A146 ◽  
Author(s):  
A. D. Alejo ◽  
J. F. González ◽  
M. E. Veramendi

Context. As part of a broader project on the role of binary stars in clusters, we present a spectroscopic study of the open cluster NGC 2546, which is a large cluster lacking previous spectroscopic analysis. Aims. We report the finding of two open clusters in the region of NGC 2546. For the two star groups, we determine radial velocity, parallax, proper motion, reddening, distance modulus, and age, using our spectroscopic observations and available photometric and astrometric data, mainly from the second Gaia data release (Gaia-DR2). We also determine the orbit of four spectroscopic binaries in these open clusters. Methods. From mid-resolution spectroscopic observations for 28 stars in the NGC 2546 region, we determined radial velocities and evaluate velocity variability. To analyze double-lined spectroscopic binaries, we used a spectral separation technique and fit the spectroscopic orbits using a least-squares code. The presence of two stellar groups is suggested by the radial velocity distribution and confirmed by available photometric and astrometric data. We applied a multi-criteria analysis to determine cluster membership, and obtained kinematic and physical parameters of the clusters. Results. NGC 2546 is actually two clusters, NGC 2546A and NGC 2546B, which are not physically related to each other. NGC 2546A has an age of about 180 Myr and a distance of 950 pc. It has a half-number radius of 8 pc and contains about 480 members brighter than G = 18 mag. NGC 2546B is a very young cluster (<10 Myr) located at a distance of 1450 pc. It is a small cluster with 80 members and a half-number radius of 1.6 pc. Stars less massive than 2.5 M⊙ in this cluster would be pre-main-sequence objects. We detected four spectroscopic binaries and determined their orbits. The two binaries of NGC 2546A contain chemically peculiar components: HD 68693 is composed of two mercury-manganese stars and HD 68624 has a Bp silicon secondary. Among the most massive objects of NGC 2546B, there are two binary stars: HD 68572, with P = 124.2 d, and CD -37 4344 with P = 10.4 d.


2017 ◽  
Vol 13 (S334) ◽  
pp. 391-393
Author(s):  
Jing Zhong ◽  
Li Chen ◽  
Chaoli Zhang ◽  
Zhengyi Shao ◽  
Jinliang Hou

AbstractIn studying Galactic open clusters based on LAMOST DR3, we deliberately selected several nearby cluster, which have relatively large projection area and reliable proper motion measurements. For each cluster, we firstly determine the typical proper motion distribution profiles in the cluster-core and the outskirt region, respectively, and perform field-star decontamination on the cluster area. We then calculate kinematic membership probability for each star in the cluster area and cross-match the highly probable members with LAMOST DR3 spectral catalog. Based on enhanced signal of cluster-member radial velocity distribution emerging from the whole field, we have also obtained reliable radial velocity membership probability for each star. Finally, we perform isochrones fitting with MCMC technique to study basic properties of these cluster, including age, metallicity, and distance modulus.


2019 ◽  
Vol 626 ◽  
pp. A90 ◽  
Author(s):  
D. Hatzidimitriou ◽  
E. V. Held ◽  
E. Tognelli ◽  
A. Bragaglia ◽  
L. Magrini ◽  
...  

Context. Pismis 18 is a moderately populated, intermediate-age open cluster located within the solar circle at a Galactocentric distance of about seven kpc. Few open clusters have been studied in detail in the inner disc region before the Gaia-ESO Survey. Aims. New data from the Gaia-ESO Survey allowed us to conduct an extended radial velocity membership study as well as spectroscopic metallicity and detailed chemical abundance measurements for this cluster. Methods. Gaia-ESO Survey data for 142 potential members, lying on the upper main sequence and on the red clump, yielded radial velocity measurements, which, together with proper motion measurements from the Gaia Second Data Release (Gaia DR2), were used to determine the systemic velocity of the cluster and membership of individual stars. Photometry from Gaia DR2 was used to re-determine cluster parameters based on high confidence member stars only. Cluster abundance measurements of six radial-velocity member stars with UVES high-resolution spectroscopy are presented for 23 elements. Results. The average radial velocity of 26 high confidence members is −27.5 ± 2.5 (std) km s−1 with an average proper motion of pmra = −5.65 ± 0.08 (std) mas yr−1 and pmdec = −2.29 ± 0.11 (std) mas yr−1. According to the new estimates, based on high confidence members, Pismis 18 has an age of τ = 700+40−50 Myr, interstellar reddening of E(B − V) = 0.562+0.012−0.026 mag and a de-reddened distance modulus of DM0 = 11.96+0.10−0.24 mag. The median metallicity of the cluster (using the six UVES stars) is [Fe/H] = +0.23 ± 0.05 dex, with [α/Fe] = 0.07 ± 0.13 and a slight enhancement of s- and r-neutron-capture elements. Conclusions. With the present work, we fully characterized the open cluster Pismis 18. We confirmed its present location in the inner disc. We estimated a younger age than the previous literature values and we gave, for the first time, its metallicity and its detailed abundances. Its [α/Fe] and [s-process/Fe], both slightly super-solar, are in agreement with other inner-disc open clusters observed by the Gaia-ESO survey.


2018 ◽  
Vol 619 ◽  
pp. A155 ◽  
Author(s):  
C. Soubiran ◽  
T. Cantat-Gaudin ◽  
M. Romero-Gómez ◽  
L. Casamiquela ◽  
C. Jordi ◽  
...  

Context. Open clusters are very good tracers of the evolution of the Galactic disc. Thanks to Gaia, their kinematics can be investigated with an unprecedented precision and accuracy. Aims. The distribution of open clusters in the 6D phase space is revisited with Gaia DR2. Methods. The weighted mean radial velocity of open clusters was determined, using the most probable members available from a previous astrometric investigation that also provided mean parallaxes and proper motions. Those parameters, all derived from Gaia DR2 only, were combined to provide the 6D phase-space information of 861 clusters. The velocity distribution of nearby clusters was investigated, as well as the spatial and velocity distributions of the whole sample as a function of age. A high-quality subsample was used to investigate some possible pairs and groups of clusters sharing the same Galactic position and velocity. Results. For the high-quality sample of 406 clusters, the median uncertainty of the weighted mean radial velocity is 0.5 km s−1. The accuracy, assessed by comparison to ground-based high-resolution spectroscopy, is better than 1 km s−1. Open clusters nicely follow the velocity distribution of field stars in the close solar neighbourhood as previously revealed by Gaia DR2. As expected, the vertical distribution of young clusters is very flat, but the novelty is the high precision to which this can be seen. The dispersion of vertical velocities of young clusters is at the level of 5 km s−1. Clusters older than 1 Gyr span distances to the Galactic plane of up to 1 kpc with a vertical velocity dispersion of 14 km s−1, typical of the thin disc. Five pairs of clusters and one group with five members might be physically related. Other binary candidates that have been identified previously are found to be chance alignments.


2015 ◽  
Vol 12 (S316) ◽  
pp. 265-266
Author(s):  
Z. Shao ◽  
X. Xie ◽  
L. Chen ◽  
J. Zhong ◽  
J. Hou ◽  
...  

AbstractBased on the Bayesian Inference (BI) method, the Mixture-Model approach is improved to combine all kinematic data, including the coordinative position($\vec{x}$), proper motion ($\vec{\mu}$) and radial velocity(v), to separate the motion of the cluster from field stars, as well as to determine the intrinsic kinematic status and dynamical effects of the cluster, such as the mass segregation, anisotropy etc.. Meanwhile, the membership probability of individual stars are estimated as by product results. This method has been testified by simulation of toy models and also successfully used for well studied open clusters, such as M67 and NGC188. It is expected to largely help the studies of open clusters while combine the coming GAIA data.


2017 ◽  
Vol 12 (S330) ◽  
pp. 273-274
Author(s):  
Jaroslav Velčovský ◽  
Jan Janík

AbstractWe present the complex study of the open cluster NGC 2281 where both traditional and newly developed methods for study of open clusters have been used. Morphological and dynamical parameters of the cluster were obtained from the accepted astrometric data. The new method “Superposition of Gaussian surfaces” along with proper motion of stars was used to determine membership probabilities which were helpful in selection of stars for further analysis. Metallicity and radial velocity of the cluster were obtained from spectroscopic measurements. Age, colour excess, and distance of the cluster were determined using absolute CCD photometry combined with previous results. The results were compared with those of previous studies.


2013 ◽  
Vol 9 (S298) ◽  
pp. 304-309
Author(s):  
J.L. Hou ◽  
L. Chen ◽  
J.C. Yu ◽  
J. Sellwood ◽  
C. Pryor

AbstractIn this paper, we present our recent work on the evolution of abundance gradients along the Milky Way disk based on the Geneva Copenhagen Survey (GCS) and Radial Velocity Experiment (RAVE) data. We will also discuss the role of the LAMOST Milky Way disk survey in clarifying the properties of metallicity breaks observed through open clusters and young tracers along the Milky Way disk. It is believed that the Galactic disk forms inside-out, in which the stellar population at increasing radii is younger and more metal poor. This picture is consistent with most Galactic Chemical Evolution (GCE) models which also predict a tight correlation between the metallicity and age of stars at a given radius. However, it is only a result of “steady state" and no dynamical evolution effects were taken into account. We have selected two stellar samples from GCS and RAVE, each sample contains about 10,000 local thin-disk, main-sequence stars. We use the guiding radius which is determined by the conservation of z-direction angular momentum, to eliminate the blurring effects. And also use the effective temperature of the main sequence stars as a proxy of stellar age. It is shown that the metallicity gradient flattens as the age increases. This is not consistent with our previous GCE prediction, but can be explained by radial mixing effects. In order to further demonstrate the abundance breaks observed in the Galactic disk we have proposed, and have been carrying out, an open cluster survey project based on LAMOST. We plan to observe at least 400 open clusters in the northern Galactic sky. From the observations, we will get uniform parameters for those clusters with radial velocity and metallicities. We anticipate that this uniform open cluster sample could clarify the observed abundance break around the Milky Way disk corotation radius and also give a more robust result concerning the evolution of the abundance gradient.


2017 ◽  
Vol 12 (S330) ◽  
pp. 233-234
Author(s):  
Chien-Cheng Lin ◽  
Xiao-Ying Pang

AbstractOpen clusters (OCs) are important objects for stellar dynamics studies. The short survival timescale of OCs makes them closely related to the formation of Galactic field stars. We motivate to investigate the dynamical evolution of OCs on the aspect of internal effect and the external influence. Firstly, we make use of the known OC catalog to obtain OCs masses, effective radii. Additionally, we estimate OCs kinematics properties by OC members cross-matched with radial velocity and metallicity from SDSSIV/APOGEE2. We then establish the fundamental plane of OCs based on the radial velocity dispersion, the effective radius, and average surface brightness. The deviation of the fundamental plane from the Virial Plane, so called the tilt, and the r.m.s. dispersion of OCs around the average plane are used to indicate the dynamical status of OCs. Parameters of the fitted plane will vary with cluster age and distance.


2019 ◽  
Vol 622 ◽  
pp. A110 ◽  
Author(s):  
D. J. Fritzewski ◽  
S. A. Barnes ◽  
D. J. James ◽  
A. M. Geller ◽  
S. Meibom ◽  
...  

Context. NGC 3532 is an extremely rich open cluster embedded in the Galactic disc, hitherto lacking a comprehensive, documented membership list. Aims. We provide membership probabilities from new radial velocity observations of solar-type and low-mass stars in NGC 3532, in part as a prelude to a subsequent study of stellar rotation in the cluster. Methods. Using extant optical and infra-red photometry we constructed a preliminary photometric membership catalogue, consisting of 2230 dwarf and turn-off stars. We selected 1060 of these for observation with the AAOmega spectrograph at the 3.9 m-Anglo-Australian Telescope and 391 stars for observations with the Hydra-South spectrograph at the 4 m Victor Blanco Telescope, obtaining spectroscopic observations over a decade for 145 stars. We measured radial velocities for our targets through cross-correlation with model spectra and standard stars, and supplemented them with radial velocities for 433 additional stars from the literature. We also measured log g, Teff, and [Fe/H] from the AAOmega spectra. Results. The radial velocity distribution emerging from the observations is centred at 5.43 ± 0.04 km s−1 and has a width (standard deviation) of 1.46 km s−1. Together with proper motions from Gaia DR2 we find 660 exclusive members, of which five are likely binary members. The members are distributed across the whole cluster sequence, from giant stars to M dwarfs, making NGC 3532 one of the richest Galactic open clusters known to date, on par with the Pleiades. From further spectroscopic analysis of 153 dwarf members we find the metallicity to be marginally sub-solar, with [Fe/H] = −0.07 ± 0.10. We confirm the extremely low reddening of the cluster, EB − V = 0.034 ± 0.012 mag, despite its location near the Galactic plane. Exploiting trigonometric parallax measurements from Gaia DR2 we find a distance of 48435−30 pc [(m − M)0 = 8.42 ± 0.14 mag]. Based on the membership we provide an empirical cluster sequence in multiple photometric passbands. A comparison of the photometry of the measured cluster members with several recent model isochrones enables us to confirm the 300 Myr cluster age. However, all of the models evince departures from the cluster sequence in particular regions, especially in the lower mass range.


Sign in / Sign up

Export Citation Format

Share Document